Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Aspect-Based Sentiment Classification Using Deep Learning and Hybrid of Word Embedding and Contextual Position

    Waqas Ahmad1, Hikmat Ullah Khan1,2,*, Fawaz Khaled Alarfaj3,*, Saqib Iqbal4, Abdullah Mohammad Alomair3, Naif Almusallam3

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3101-3124, 2023, DOI:10.32604/iasc.2023.040614 - 11 September 2023

    Abstract Aspect-based sentiment analysis aims to detect and classify the sentiment polarities as negative, positive, or neutral while associating them with their identified aspects from the corresponding context. In this regard, prior methodologies widely utilize either word embedding or tree-based representations. Meanwhile, the separate use of those deep features such as word embedding and tree-based dependencies has become a significant cause of information loss. Generally, word embedding preserves the syntactic and semantic relations between a couple of terms lying in a sentence. Besides, the tree-based structure conserves the grammatical and logical dependencies of context. In addition,… More >

  • Open Access

    ARTICLE

    Multi-Task Learning Model with Data Augmentation for Arabic Aspect-Based Sentiment Analysis

    Arwa Saif Fadel1,2,*, Osama Ahmed Abulnaja1, Mostafa Elsayed Saleh1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4419-4444, 2023, DOI:10.32604/cmc.2023.037112 - 31 March 2023

    Abstract Aspect-based sentiment analysis (ABSA) is a fine-grained process. Its fundamental subtasks are aspect term extraction (ATE) and aspect polarity classification (APC), and these subtasks are dependent and closely related. However, most existing works on Arabic ABSA content separately address them, assume that aspect terms are preidentified, or use a pipeline model. Pipeline solutions design different models for each task, and the output from the ATE model is used as the input to the APC model, which may result in error propagation among different steps because APC is affected by ATE error. These methods are impractical… More >

  • Open Access

    ARTICLE

    Aspect Extraction Approach for Sentiment Analysis Using Keywords

    Nafees Ayub1, Muhammad Ramzan Talib1,*, Muhammad Kashif Hanif1, Muhammad Awais2

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6879-6892, 2023, DOI:10.32604/cmc.2023.034214 - 28 December 2022

    Abstract Sentiment Analysis deals with consumer reviews available on blogs, discussion forums, E-commerce websites, and App Store. These online reviews about products are also becoming essential for consumers and companies as well. Consumers rely on these reviews to make their decisions about products and companies are also very interested in these reviews to judge their products and services. These reviews are also a very precious source of information for requirement engineers. But companies and consumers are not very satisfied with the overall sentiment; they like fine-grained knowledge about consumer reviews. Owing to this, many researchers have… More >

  • Open Access

    ARTICLE

    Multi Layered Rule-Based Technique for Explicit Aspect Extraction from Online Reviews

    Mubashar Hussain1, Toqir A. Rana2,3, Aksam Iftikhar4, M. Usman Ashraf5,*, Muhammad Waseem Iqbal6, Ahmed Alshaflut7, Abdullah Alourani8

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4641-4656, 2022, DOI:10.32604/cmc.2022.024759 - 28 July 2022

    Abstract In the field of sentiment analysis, extracting aspects or opinion targets from user reviews about a product is a key task. Extracting the polarity of an opinion is much more useful if we also know the targeted Aspect or Feature. Rule based approaches, like dependency-based rules, are quite popular and effective for this purpose. However, they are heavily dependent on the authenticity of the employed parts-of-speech (POS) tagger and dependency parser. Another popular rule based approach is to use sequential rules, wherein the rules formulated by learning from the user’s behavior. However, in general, the… More >

  • Open Access

    ARTICLE

    A Model for Cross-Domain Opinion Target Extraction in Sentiment Analysis

    Muhammet Yasin PAK*, Serkan GUNAL

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 1215-1239, 2022, DOI:10.32604/csse.2022.023051 - 08 February 2022

    Abstract Opinion target extraction is one of the core tasks in sentiment analysis on text data. In recent years, dependency parser–based approaches have been commonly studied for opinion target extraction. However, dependency parsers are limited by language and grammatical constraints. Therefore, in this work, a sequential pattern-based rule mining model, which does not have such constraints, is proposed for cross-domain opinion target extraction from product reviews in unknown domains. Thus, knowing the domain of reviews while extracting opinion targets becomes no longer a requirement. The proposed model also reveals the difference between the concepts of opinion… More >

  • Open Access

    ARTICLE

    Extraction of Opinion Target Using Syntactic Rules in Urdu Text

    Toqir A. Rana1,*, Bahrooz Bakht1, Mehtab Afzal1, Natash Ali Mian2, Muhammad Waseem Iqbal3, Abbas Khalid1, Muhammad Raza Naqvi4

    Intelligent Automation & Soft Computing, Vol.29, No.3, pp. 839-853, 2021, DOI:10.32604/iasc.2021.018572 - 01 July 2021

    Abstract Opinion target or aspect extraction is the key task of aspect-based sentiment analysis. This task focuses on the extraction of targeted words or phrases against which a user has expressed his/her opinion. Although, opinion target extraction has been studied extensively in the English language domain, with notable work in other languages such as Chinese, Arabic etc., other regional languages have been neglected. One of the reasons is the lack of resources and available texts for these languages. Urdu is one, with millions of native and non-native speakers across the globe. In this paper, the Urdu… More >

  • Open Access

    ARTICLE

    Ensemble Based Temporal Weighting and Pareto Ranking (ETP) Model for Effective Root Cause Analysis

    Naveen Kumar Seerangan1,*, S. Vijayaragavan Shanmugam2

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 819-830, 2021, DOI:10.32604/cmc.2021.012135 - 04 June 2021

    Abstract Root-cause identification plays a vital role in business decision making by providing effective future directions for the organizations. Aspect extraction and sentiment extraction plays a vital role in identifying the root-causes. This paper proposes the Ensemble based temporal weighting and pareto ranking (ETP) model for Root-cause identification. Aspect extraction is performed based on rules and is followed by opinion identification using the proposed boosted ensemble model. The obtained aspects are validated and ranked using the proposed aspect weighing scheme. Pareto-rule based aspect selection is performed as the final selection mechanism and the results are presented More >

Displaying 1-10 on page 1 of 7. Per Page