Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Evaluating Public Sentiments during Uttarakhand Flood: An Artificial Intelligence Techniques

    Stephen Afrifa1,2,*, Vijayakumar Varadarajan3,4,5,*, Peter Appiahene2, Tao Zhang1, Richmond Afrifa6

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1625-1639, 2024, DOI:10.32604/csse.2024.055084 - 22 November 2024

    Abstract Users of social networks can readily express their thoughts on websites like Twitter (now X), Facebook, and Instagram. The volume of textual data flowing from users has greatly increased with the advent of social media in comparison to traditional media. For instance, using natural language processing (NLP) methods, social media can be leveraged to obtain crucial information on the present situation during disasters. In this work, tweets on the Uttarakhand flash flood are analyzed using a hybrid NLP model. This investigation employed sentiment analysis (SA) to determine the people’s expressed negative attitudes regarding the disaster. More >

  • Open Access

    REVIEW

    Discrete Choice Models and Artificial Intelligence Techniques for Predicting the Determinants of Transport Mode Choice—A Systematic Review

    Mujahid Ali*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2161-2194, 2024, DOI:10.32604/cmc.2024.058888 - 18 November 2024

    Abstract Forecasting travel demand requires a grasp of individual decision-making behavior. However, transport mode choice (TMC) is determined by personal and contextual factors that vary from person to person. Numerous characteristics have a substantial impact on travel behavior (TB), which makes it important to take into account while studying transport options. Traditional statistical techniques frequently presume linear correlations, but real-world data rarely follows these presumptions, which may make it harder to grasp the complex interactions. Thorough systematic review was conducted to examine how machine learning (ML) approaches might successfully capture nonlinear correlations that conventional methods may… More >

  • Open Access

    ARTICLE

    Artificial Intelligence Prediction of One-Part Geopolymer Compressive Strength for Sustainable Concrete

    Mohamed Abdel-Mongy1, Mudassir Iqbal2, M. Farag3, Ahmed. M. Yosri1,*, Fahad Alsharari1, Saif Eldeen A. S. Yousef4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 525-543, 2024, DOI:10.32604/cmes.2024.052505 - 20 August 2024

    Abstract Alkali-activated materials/geopolymer (AAMs), due to their low carbon emission content, have been the focus of recent studies on ecological concrete. In terms of performance, fly ash and slag are preferred materials for precursors for developing a one-part geopolymer. However, determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported. Therefore, in this study, machine learning methods such as artificial neural networks (ANN) and gene expression programming (GEP) models were developed using MATLAB and GeneXprotools, respectively, for the prediction of compressive strength under variable input materials and content… More >

  • Open Access

    ARTICLE

    Learning-Related Sentiment Detection, Classification, and Application for a Quality Education Using Artificial Intelligence Techniques

    Samah Alhazmi1,*, Shahnawaz Khan2, Mohammad Haider Syed1

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3487-3499, 2023, DOI:10.32604/iasc.2023.036297 - 15 March 2023

    Abstract Quality education is one of the primary objectives of any nation-building strategy and is one of the seventeen Sustainable Development Goals (SDGs) by the United Nations. To provide quality education, delivering top-quality content is not enough. However, understanding the learners’ emotions during the learning process is equally important. However, most of this research work uses general data accessed from Twitter or other publicly available databases. These databases are generally not an ideal representation of the actual learning process and the learners’ sentiments about the learning process. This research has collected real data from the learners, More >

  • Open Access

    ARTICLE

    Artificial Intelligence Techniques Based Learner Authentication in Cybersecurity Higher Education Institutions

    Abdullah Saad AL-Malaise AL-Ghamdi1, Mahmoud Ragab2,3,4,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3131-3144, 2022, DOI:10.32604/cmc.2022.026457 - 29 March 2022

    Abstract Education 4.0 is being authorized more and more by the design of artificial intelligence (AI) techniques. Higher education institutions (HEI) have started to utilize Internet technologies to improve the quality of the service and boost knowledge. Due to the unavailability of information technology (IT) infrastructures, HEI is vulnerable to cyberattacks. Biometric authentication can be used to authenticate a person based on biological features such as face, fingerprint, iris, and so on. This study designs a novel search and rescue optimization with deep learning based learning authentication technique for cybersecurity in higher education institutions, named SRODL-LAC… More >

  • Open Access

    ARTICLE

    Optimized Generative Adversarial Networks for Adversarial Sample Generation

    Daniyal M. Alghazzawi1, Syed Hamid Hasan1,*, Surbhi Bhatia2

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3877-3897, 2022, DOI:10.32604/cmc.2022.024613 - 29 March 2022

    Abstract Detecting the anomalous entity in real-time network traffic is a popular area of research in recent times. Very few researches have focused on creating malware that fools the intrusion detection system and this paper focuses on this topic. We are using Deep Convolutional Generative Adversarial Networks (DCGAN) to trick the malware classifier to believe it is a normal entity. In this work, a new dataset is created to fool the Artificial Intelligence (AI) based malware detectors, and it consists of different types of attacks such as Denial of Service (DoS), scan 11, scan 44, botnet,… More >

  • Open Access

    ARTICLE

    Smart and Automated Diagnosis of COVID-19 Using Artificial Intelligence Techniques

    Masoud Alajmi1,*, Osama A. Elshakankiry2, Walid El-Shafai3, Hala S. El-Sayed4, Ahmed I. Sallam5, Heba M. El-Hoseny6, Ahmed Sedik7, Osama S. Faragallah2

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1403-1413, 2022, DOI:10.32604/iasc.2022.021211 - 09 December 2021

    Abstract Machine Learning (ML) techniques have been combined with modern technologies across medical fields to detect and diagnose many diseases. Meanwhile, given the limited and unclear statistics on the Coronavirus Disease 2019 (COVID-19), the greatest challenge for all clinicians is to find effective and accurate methods for early diagnosis of the virus at a low cost. Medical imaging has found a role in this critical task utilizing a smart technology through different image modalities for COVID-19 cases, including X-ray imaging, Computed Tomography (CT) and magnetic resonance image (MRI) that can be used for diagnosis by radiologists.… More >

  • Open Access

    ARTICLE

    Parallel Optimization of Program Instructions Using Genetic Algorithms

    Petre Anghelescu*

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3293-3310, 2021, DOI:10.32604/cmc.2021.015495 - 01 March 2021

    Abstract This paper describes an efficient solution to parallelize software program instructions, regardless of the programming language in which they are written. We solve the problem of the optimal distribution of a set of instructions on available processors. We propose a genetic algorithm to parallelize computations, using evolution to search the solution space. The stages of our proposed genetic algorithm are: The choice of the initial population and its representation in chromosomes, the crossover, and the mutation operations customized to the problem being dealt with. In this paper, genetic algorithms are applied to the entire search… More >

  • Open Access

    ARTICLE

    An E-Assessment Methodology Based on Artificial Intelligence Techniques to Determine Students’ Language Quality and Programming Assignments’ Plagiarism

    Farhan Ullah1,4,*, Abdullah Bajahzar2, Hamza Aldabbas3, Muhammad Farhan4, Hamad Naeem1, S. Sabahat H. Bukhari4,5, Kaleem Razzaq Malik6

    Intelligent Automation & Soft Computing, Vol.26, No.1, pp. 169-180, 2020, DOI:10.31209/2019.100000138

    Abstract This research aims to an electronic assessment (e-assessment) of students’ replies in response to the standard answer of teacher’s question to automate the assessment by WordNet semantic similarity. For this purpose, a new methodology for Semantic Similarity through WordNet Semantic Similarity Techniques (SS-WSST) has been proposed to calculate semantic similarity among teacher’ query and student’s reply. In the pilot study-1 42 words’ pairs extracted from 8 students’ replies, which marked by semantic similarity measures and compared with manually assigned teacher’s marks. The teacher is provided with 4 bins of the mark while our designed methodology More >

Displaying 1-10 on page 1 of 9. Per Page