Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    Meta-Heuristic Optimized Hybrid Wavelet Features for Arrhythmia Classification

    S. R. Deepa1, M. Subramoniam2,*, R. Swarnalatha3, S. Poornapushpakala2, S. Barani2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 745-761, 2023, DOI:10.32604/iasc.2023.034211

    Abstract The non-invasive evaluation of the heart through EectroCardioGraphy (ECG) has played a key role in detecting heart disease. The analysis of ECG signals requires years of learning and experience to interpret and extract useful information from them. Thus, a computerized system is needed to classify ECG signals with more accurate results effectively. Abnormal heart rhythms are called arrhythmias and cause sudden cardiac deaths. In this work, a Computerized Abnormal Heart Rhythms Detection (CAHRD) system is developed using ECG signals. It consists of four stages; preprocessing, feature extraction, feature optimization and classifier. At first, Pan and Tompkins algorithm is employed to… More >

  • Open Access

    ARTICLE

    Cardiac Arrhythmia Disease Classifier Model Based on a Fuzzy Fusion Approach

    Fatma Taher1, Hamoud Alshammari2, Lobna Osman3, Mohamed Elhoseny4, Abdulaziz Shehab5,2,*, Eman Elayat6

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4485-4499, 2023, DOI:10.32604/cmc.2023.036118

    Abstract Cardiac diseases are one of the greatest global health challenges. Due to the high annual mortality rates, cardiac diseases have attracted the attention of numerous researchers in recent years. This article proposes a hybrid fuzzy fusion classification model for cardiac arrhythmia diseases. The fusion model is utilized to optimally select the highest-ranked features generated by a variety of well-known feature-selection algorithms. An ensemble of classifiers is then applied to the fusion’s results. The proposed model classifies the arrhythmia dataset from the University of California, Irvine into normal/abnormal classes as well as 16 classes of arrhythmia. Initially, at the preprocessing steps,… More >

  • Open Access

    CASE REPORT

    Life Threatening Broad QRS Tachycardia in an Infant with Conduction Disorder and SCN5A Mutation

    Elio Caruso1,*, Silvia Farruggio1, Alfredo Di Pino1, Paolo Guccione1, Mohammadrafie Khorgami2

    Congenital Heart Disease, Vol.17, No.5, pp. 551-556, 2022, DOI:10.32604/chd.2022.023711

    Abstract We present the case of an infant admitted to our department for a rapid broad complex tachycardia and cardiovascular collapse. The patient was submitted to genetic testing because of a conduction defect at baseline ECG and family history of gene mutation. A new SCN5A gene mutation variant was found leading to diagnosis of sodium-channel dysfunction arrhythmia. More > Graphic Abstract

    Life Threatening Broad QRS Tachycardia in an Infant with Conduction Disorder and <i>SCN5A</i> Mutation

  • Open Access

    CASE REPORT

    Multimodal Imaging with 3D-Holograms for Preoperative Planning in Pediatric Cardiac Surgery: A Unique Case Report

    Federica Caldaroni1, Massimo Chessa2, Alessandro Varrica1, Alessandro Giamberti1,*

    Congenital Heart Disease, Vol.17, No.4, pp. 491-494, 2022, DOI:10.32604/chd.2022.019119

    Abstract Multimodal imaging, including augmented or mixed reality, transforms the physicians’ interaction with clinical imaging, allowing more accurate data interpretation, better spatial resolution, and depth perception of the patient’s anatomy. We successfully overlay 3D holographic visualization to magnetic resonance imaging images for preoperative decision making of a complex case of cardiac tumour in a 7-year-old girl. More >

  • Open Access

    ARTICLE

    Arrhythmia Prediction on Optimal Features Obtained from the ECG as Images

    Fuad A. M. Al-Yarimi*

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 129-142, 2023, DOI:10.32604/csse.2023.024297

    Abstract A critical component of dealing with heart disease is real-time identification, which triggers rapid action. The main challenge of real-time identification is illustrated here by the rare occurrence of cardiac arrhythmias. Recent contributions to cardiac arrhythmia prediction using supervised learning approaches generally involve the use of demographic features (electronic health records), signal features (electrocardiogram features as signals), and temporal features. Since the signal of the electrical activity of the heartbeat is very sensitive to differences between high and low heartbeats, it is possible to detect some of the irregularities in the early stages of arrhythmia. This paper describes the training… More >

  • Open Access

    ARTICLE

    Classification of Arrhythmia Based on Convolutional Neural Networks and Encoder-Decoder Model

    Jian Liu1,*, Xiaodong Xia1, Chunyang Han2, Jiao Hui3, Jim Feng4

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 265-278, 2022, DOI:10.32604/cmc.2022.029227

    Abstract As a common and high-risk type of disease, heart disease seriously threatens people’s health. At the same time, in the era of the Internet of Thing (IoT), smart medical device has strong practical significance for medical workers and patients because of its ability to assist in the diagnosis of diseases. Therefore, the research of real-time diagnosis and classification algorithms for arrhythmia can help to improve the diagnostic efficiency of diseases. In this paper, we design an automatic arrhythmia classification algorithm model based on Convolutional Neural Network (CNN) and Encoder-Decoder model. The model uses Long Short-Term Memory (LSTM) to consider the… More >

  • Open Access

    ARTICLE

    Arrhythmia Detection and Classification by Using Modified Recurrent Neural Network

    Ajina Mohamed Ameer*, M. Victor Jose

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1349-1361, 2022, DOI:10.32604/iasc.2022.023924

    Abstract This paper presents a novel approach for arrhythmia detection and classification using modified recurrent neural network. In medicine and analytics, arrhythmia detections is a hot topic, specifically when it comes to cardiac identification. In the research methodology, there are 4 main steps. Acquisition and pre-processing of data, electrocardiogram (ECG) feature extraction utilizing QRS (Quick Response Systems) peak, and ECG signal classification using a Modified Recurrent Neural Network (Modified RNN) for arrhythmia diagnosis. The Massachusetts Institute of Technology-Beth Israel Hospital. (MIT-BIH) Arrhythmia database was used, as well as the image accuracy. Medium filter is used in the pre-processing. Feature extraction is… More >

  • Open Access

    ARTICLE

    Handling High Dimensionality in Ensemble Learning for Arrhythmia Prediction

    Fuad Ali Mohammed Al-Yarimi*

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1729-1742, 2022, DOI:10.32604/iasc.2022.022418

    Abstract Computer-aided arrhythmia prediction from ECG (electrocardiograms) is essential in clinical practices, which promises to reduce the mortality caused by inexperienced clinical practitioners. Moreover, computer-aided methods often succeed in the early detection of arrhythmia scope from electrocardiogram reports. Machine learning is the buzz of computer-aided clinical practices. Particularly, computer-aided arrhythmia prediction methods highly adopted machine learning methods. However, the high dimensionality in feature values considered for the machine learning models’ training phase often causes false alarming. This manuscript addressed the high dimensionality in the learning phase and proposed an (Ensemble Learning method for Arrhythmia Prediction) ELAP (ensemble learning-based arrhythmia prediction). The… More >

  • Open Access

    ARTICLE

    Heart Sound Analysis for Abnormality Detection

    Zainab Arshad1, Sohail Masood Bhatti2,*, Huma Tauseef3, Arfan Jaffar2

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 1195-1205, 2022, DOI:10.32604/iasc.2022.022160

    Abstract According to the World Health Organization, 31% death rate in the World is because of cardiovascular diseases like heart arrhythmia and heart failure. Early diagnosis of heart problems may help in timely treatment of the patients and hence control death rate. Heart sounds are good signals of heart health if examined by an expert. Moreover, heart sounds can be analyzed with inexpensive and portable medical devices. Automatic heart sound classification can be very useful in diagnosing heart problems. Major focus of this research is to study the existing techniques for heart sound classification and develop a more sophisticated method. A… More >

  • Open Access

    ARTICLE

    Automatic Heart Disease Detection by Classification of Ventricular Arrhythmias on ECG Using Machine Learning

    Khalid Mahmood Aamir1, Muhammad Ramzan1,2, Saima Skinadar1, Hikmat Ullah Khan3, Usman Tariq4, Hyunsoo Lee5, Yunyoung Nam5,*, Muhammad Attique Khan6

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 17-33, 2022, DOI:10.32604/cmc.2022.018613

    Abstract This paper focuses on detecting diseased signals and arrhythmias classification into two classes: ventricular tachycardia and premature ventricular contraction. The sole purpose of the signal detection is used to determine if a signal has been collected from a healthy or sick person. The proposed research approach presents a mathematical model for the signal detector based on calculating the instantaneous frequency (IF). Once a signal taken from a patient is detected, then the classifier takes that signal as input and classifies the target disease by predicting the class label. While applying the classifier, templates are designed separately for ventricular tachycardia and… More >

Displaying 1-10 on page 1 of 40. Per Page  

Share Link