Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Hybrid Multi-Strategy Aquila Optimization with Deep Learning Driven Crop Type Classification on Hyperspectral Images

    Sultan Alahmari1, Saud Yonbawi2, Suneetha Racharla3, E. Laxmi Lydia4, Mohamad Khairi Ishak5, Hend Khalid Alkahtani6,*, Ayman Aljarbouh7, Samih M. Mostafa8

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 375-391, 2023, DOI:10.32604/csse.2023.036362 - 26 May 2023

    Abstract Hyperspectral imaging instruments could capture detailed spatial information and rich spectral signs of observed scenes. Much spatial information and spectral signatures of hyperspectral images (HSIs) present greater potential for detecting and classifying fine crops. The accurate classification of crop kinds utilizing hyperspectral remote sensing imaging (RSI) has become an indispensable application in the agricultural domain. It is significant for the prediction and growth monitoring of crop yields. Amongst the deep learning (DL) techniques, Convolution Neural Network (CNN) was the best method for classifying HSI for their incredible local contextual modeling ability, enabling spectral and spatial… More >

  • Open Access

    ARTICLE

    Power Transformer Fault Diagnosis Using Random Forest and Optimized Kernel Extreme Learning Machine

    Tusongjiang Kari1, Zhiyang He1, Aisikaer Rouzi2, Ziwei Zhang3, Xiaojing Ma1,*, Lin Du1

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 691-705, 2023, DOI:10.32604/iasc.2023.037617 - 29 April 2023

    Abstract Power transformer is one of the most crucial devices in power grid. It is significant to determine incipient faults of power transformers fast and accurately. Input features play critical roles in fault diagnosis accuracy. In order to further improve the fault diagnosis performance of power transformers, a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study. Firstly, the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration, gas ratio and energy-weighted dissolved gas analysis. Afterwards, a kernel extreme learning… More >

  • Open Access

    ARTICLE

    Smart Fraud Detection in E-Transactions Using Synthetic Minority Oversampling and Binary Harris Hawks Optimization

    Chandana Gouri Tekkali, Karthika Natarajan*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3171-3187, 2023, DOI:10.32604/cmc.2023.036865 - 31 March 2023

    Abstract Fraud Transactions are haunting the economy of many individuals with several factors across the globe. This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ensure the security and integrity of digital transactions. This research proposes a novel methodology through three stages. Firstly, Synthetic Minority Oversampling Technique (SMOTE) is applied to get balanced data. Secondly, SMOTE is fed to the nature-inspired Meta Heuristic (MH) algorithm, namely Binary Harris Hawks Optimization (BinHHO), Binary Aquila Optimization (BAO), and Binary Grey Wolf Optimization (BGWO), for feature selection. BinHHO has performed well when compared with More >

  • Open Access

    ARTICLE

    Aquila Optimization with Machine Learning-Based Anomaly Detection Technique in Cyber-Physical Systems

    A. Ramachandran1,*, K. Gayathri2, Ahmed Alkhayyat3, Rami Q. Malik4

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2177-2194, 2023, DOI:10.32604/csse.2023.034438 - 09 February 2023

    Abstract Cyber-physical system (CPS) is a concept that integrates every computer-driven system interacting closely with its physical environment. Internet-of-things (IoT) is a union of devices and technologies that provide universal interconnection mechanisms between the physical and digital worlds. Since the complexity level of the CPS increases, an adversary attack becomes possible in several ways. Assuring security is a vital aspect of the CPS environment. Due to the massive surge in the data size, the design of anomaly detection techniques becomes a challenging issue, and domain-specific knowledge can be applied to resolve it. This article develops an… More >

  • Open Access

    ARTICLE

    Intelligent Aquila Optimization Algorithm-Based Node Localization Scheme for Wireless Sensor Networks

    Nidhi Agarwal1,2, M. Gokilavani3, S. Nagarajan4, S. Saranya5, Hadeel Alsolai6, Sami Dhahbi7,*, Amira Sayed Abdelaziz8

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 141-152, 2023, DOI:10.32604/cmc.2023.030074 - 22 September 2022

    Abstract In recent times, wireless sensor network (WSN) finds their suitability in several application areas, ranging from military to commercial ones. Since nodes in WSN are placed arbitrarily in the target field, node localization (NL) becomes essential where the positioning of the nodes can be determined by the aid of anchor nodes. The goal of any NL scheme is to improve the localization accuracy and reduce the localization error rate. With this motivation, this study focuses on the design of Intelligent Aquila Optimization Algorithm Based Node Localization Scheme (IAOAB-NLS) for WSN. The presented IAOAB-NLS model makes More >

Displaying 1-10 on page 1 of 5. Per Page