Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (42)
  • Open Access

    ARTICLE

    Evolutionary Safe Padé Approximation Scheme for Dynamical Study of Nonlinear Cervical Human Papilloma Virus Infection Model

    Javaid Ali1, Armando Ciancio2, Kashif Ali Khan3, Nauman Raza4,5, Haci Mehmet Baskonus6,*, Muhammad Luqman1, Zafar-Ullah Khan7

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2275-2296, 2024, DOI:10.32604/cmes.2024.046923 - 08 July 2024

    Abstract This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic (CCE) model. The underlying CCE model lacks a closed-form exact solution. Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties, such as positivity, boundedness, and feasibility. Therefore, the development of structure-preserving semi-analytical approaches is always necessary. This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem. Singularity-free safe Padé rational functions approximate the mathematical More >

  • Open Access

    REVIEW

    An Overview of Sequential Approximation in Topology Optimization of Continuum Structure

    Kai Long1, Ayesha Saeed1, Jinhua Zhang2, Yara Diaeldin1, Feiyu Lu1, Tao Tao3, Yuhua Li1,*, Pengwen Sun4, Jinshun Yan5

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 43-67, 2024, DOI:10.32604/cmes.2023.031538 - 30 December 2023

    Abstract This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures. These structures, commonly encountered in engineering applications, often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables. As a result, sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges. Over the past several decades, topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds. In comparison… More >

  • Open Access

    ARTICLE

    A Dynamic Multi-Attribute Resource Bidding Mechanism with Privacy Protection in Edge Computing

    Shujuan Tian1,2,3, Wenjian Ding1,2,3, Gang Liu4, Yuxia Sun5, Saiqin Long5, Jiang Zhu1,2,3,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 373-391, 2023, DOI:10.32604/cmc.2023.034770 - 06 February 2023

    Abstract In edge computing, a reasonable edge resource bidding mechanism can enable edge providers and users to obtain benefits in a relatively fair fashion. To maximize such benefits, this paper proposes a dynamic multi-attribute resource bidding mechanism (DMRBM). Most of the previous work mainly relies on a third-party agent to exchange information to gain optimal benefits. It is worth noting that when edge providers and users trade with third-party agents which are not entirely reliable and trustworthy, their sensitive information is prone to be leaked. Moreover, the privacy protection of edge providers and users must be… More >

  • Open Access

    ARTICLE

    A Novel Approximate Message Passing Detection for Massive MIMO 5G System

    Nidhi Gour1, Rajneesh Pareek1, Karthikeyan Rajagopal2,3, Himanshu Sharma1, Mrim M. Alnfiai4, Mohammed A. AlZain4, Mehedi Masud5, Arun Kumar6,*

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2827-2835, 2023, DOI:10.32604/csse.2023.033341 - 21 December 2022

    Abstract Massive-Multiple Inputs and Multiple Outputs (M-MIMO) is considered as one of the standard techniques in improving the performance of Fifth Generation (5G) radio. 5G signal detection with low propagation delay and high throughput with minimum computational intricacy are some of the serious concerns in the deployment of 5G. The evaluation of 5G promises a high quality of service (QoS), a high data rate, low latency, and spectral efficiency, ensuring several applications that will improve the services in every sector. The existing detection techniques cannot be utilised in 5G and beyond 5G due to the high More >

  • Open Access

    ARTICLE

    Existence of Approximate Solutions to Nonlinear Lorenz System under Caputo-Fabrizio Derivative

    Khursheed J. Ansari1, Mustafa Inc2,3,4,*, K. H. Mahmoud5,*, Eiman6

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1669-1684, 2023, DOI:10.32604/cmes.2022.022971 - 27 October 2022

    Abstract In this article, we developed sufficient conditions for the existence and uniqueness of an approximate solution to a nonlinear system of Lorenz equations under Caputo-Fabrizio fractional order derivative (CFFD). The required results about the existence and uniqueness of a solution are derived via the fixed point approach due to Banach and Krassnoselskii. Also, we enriched our work by establishing a stable result based on the Ulam-Hyers (U-H) concept. Also, the approximate solution is computed by using a hybrid method due to the Laplace transform and the Adomian decomposition method. We computed a few terms of… More >

  • Open Access

    ARTICLE

    An Uncertainty Analysis and Reliability-Based Multidisciplinary Design Optimization Method Using Fourth-Moment Saddlepoint Approximation

    Yongqiang Guo1,2,*, Zhiyuan Lv3

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1855-1870, 2023, DOI:10.32604/cmes.2022.022211 - 20 September 2022

    Abstract In uncertainty analysis and reliability-based multidisciplinary design and optimization (RBMDO) of engineering structures, the saddlepoint approximation (SA) method can be utilized to enhance the accuracy and efficiency of reliability evaluation. However, the random variables involved in SA should be easy to handle. Additionally, the corresponding saddlepoint equation should not be complicated. Both of them limit the application of SA for engineering problems. The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments. However, the traditional moment matching method is not very accurate generally. In… More >

  • Open Access

    ARTICLE

    An Optimized Deep-Learning-Based Low Power Approximate Multiplier Design

    M. Usharani1,*, B. Sakthivel2, S. Gayathri Priya3, T. Nagalakshmi4, J. Shirisha5

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1647-1657, 2023, DOI:10.32604/csse.2023.027744 - 15 June 2022

    Abstract Approximate computing is a popular field for low power consumption that is used in several applications like image processing, video processing, multimedia and data mining. This Approximate computing is majorly performed with an arithmetic circuit particular with a multiplier. The multiplier is the most essential element used for approximate computing where the power consumption is majorly based on its performance. There are several researchers are worked on the approximate multiplier for power reduction for a few decades, but the design of low power approximate multiplier is not so easy. This seems a bigger challenge for… More >

  • Open Access

    ARTICLE

    Truncation and Rounding-Based Scalable Approximate Multiplier Design for Computer Imaging Applications

    S. Rooban1,*, A. Yamini Naga Ratnam1, M. V. S. Ramprasad2, N. Subbulakshmi3, R. Uma Mageswari4

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5169-5184, 2022, DOI:10.32604/cmc.2022.027974 - 28 July 2022

    Abstract Advanced technology used for arithmetic computing application, comprises greater number of approximate multipliers and approximate adders. Truncation and Rounding-based Scalable Approximate Multiplier (TRSAM) distinguish a variety of modes based on height (h) and truncation (t) as TRSAM (h, t) in the architecture. This TRSAM operation produces higher absolute error in Least Significant Bit (LSB) data shift unit. A new scalable approximate multiplier approach that uses truncation and rounding TRSAM (3, 7) is proposed to increase the multiplier accuracy. With the help of foremost one bit architecture, the proposed scalable approximate multiplier approach reduces the partial products. The proposed… More >

  • Open Access

    ARTICLE

    RBMDO Using Gaussian Mixture Model-Based Second-Order Mean-Value Saddlepoint Approximation

    Debiao Meng1,2,3, Shiyuan Yang1, Tao Lin4,5,*, Jiapeng Wang1, Hengfei Yang1, Zhiyuan Lv1

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 553-568, 2022, DOI:10.32604/cmes.2022.020756 - 15 June 2022

    Abstract Actual engineering systems will be inevitably affected by uncertain factors. Thus, the Reliability-Based Multidisciplinary Design Optimization (RBMDO) has become a hotspot for recent research and application in complex engineering system design. The Second-Order/First-Order Mean-Value Saddlepoint Approximate (SOMVSA/FOMVSA) are two popular reliability analysis strategies that are widely used in RBMDO. However, the SOMVSA method can only be used efficiently when the distribution of input variables is Gaussian distribution, which significantly limits its application. In this study, the Gaussian Mixture Model-based Second-Order Mean-Value Saddlepoint Approximation (GMM-SOMVSA) is introduced to tackle above problem. It is integrated with the More >

  • Open Access

    ARTICLE

    Optimized Image Multiplication with Approximate Counter Based Compressor

    M. Maria Dominic Savio1,*, T. Deepa1, N. Bharathiraja2, Anudeep Bonasu3

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3815-3834, 2022, DOI:10.32604/cmc.2022.025924 - 29 March 2022

    Abstract The processor is greatly hampered by the large dataset of picture or multimedia data. The logic of approximation hardware is moving in the direction of multimedia processing with a given amount of acceptable mistake. This study proposes various higher-order approximate counter-based compressor (CBC) using input shuffled 6:3 CBC. In the Wallace multiplier using a CBC is a significant factor in partial product reduction. So the design of 10-4, 11-4, 12-4, 13-4 and 14-4 CBC are proposed in this paper using an input shuffled 6:3 compressor to attain two stage multiplications. The input shuffling aims to… More >

Displaying 1-10 on page 1 of 42. Per Page