Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Multi-Label Feature Selection Based on Improved Ant Colony Optimization Algorithm with Dynamic Redundancy and Label Dependence

    Ting Cai1, Chun Ye1, Zhiwei Ye1,*, Ziyuan Chen1, Mengqing Mei1, Haichao Zhang1, Wanfang Bai2, Peng Zhang3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1157-1175, 2024, DOI:10.32604/cmc.2024.055080 - 15 October 2024

    Abstract The world produces vast quantities of high-dimensional multi-semantic data. However, extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging. Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features. The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection, because of its simplicity, efficiency, and similarity to reinforcement learning. Nevertheless, existing methods do not consider crucial correlation information, such as dynamic redundancy and label correlation. To tackle these concerns, the paper proposes a More >

  • Open Access

    ARTICLE

    Security Test Case Prioritization through Ant Colony Optimization Algorithm

    Abdulaziz Attaallah1, Khalil al-Sulbi2, Areej Alasiry3, Mehrez Marzougui3, Mohd Waris Khan4,*, Mohd Faizan4, Alka Agrawal5, Dhirendra Pandey5

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3165-3195, 2023, DOI:10.32604/csse.2023.040259 - 09 November 2023

    Abstract Security testing is a critical concern for organizations worldwide due to the potential financial setbacks and damage to reputation caused by insecure software systems. One of the challenges in software security testing is test case prioritization, which aims to reduce redundancy in fault occurrences when executing test suites. By effectively applying test case prioritization, both the time and cost required for developing secure software can be reduced. This paper proposes a test case prioritization technique based on the Ant Colony Optimization (ACO) algorithm, a metaheuristic approach. The performance of the ACO-based technique is evaluated using More >

  • Open Access

    ARTICLE

    A Drone-Based Blood Donation Approach Using an Ant Colony Optimization Algorithm

    Sana Abbas1, Faraha Ashraf1, Fahd Jarad2,3,*, Muhammad Shoaib Sardar1, Imran Siddique4

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1917-1930, 2023, DOI:10.32604/cmes.2023.024700 - 06 February 2023

    Abstract This article presents an optimized approach of mathematical techniques in the medical domain by manoeuvring the phenomenon of ant colony optimization algorithm (also known as ACO). A complete graph of blood banks and a path that covers all the blood banks without repeating any link is required by applying the Travelling Salesman Problem (often TSP). The wide use promises to accelerate and offers the opportunity to cultivate health care, particularly in remote or unmerited environments by shrinking lab testing reversal times, empowering just-in-time lifesaving medical supply. More >

  • Open Access

    ARTICLE

    Reconstruction and Optimization of Complex Network Community Structure under Deep Learning and Quantum Ant Colony Optimization Algorithm

    Peng Mei1, Gangyi Ding1, Qiankun Jin1, Fuquan Zhang2,*, Yeh-Cheng Chen3

    Intelligent Automation & Soft Computing, Vol.27, No.1, pp. 159-171, 2021, DOI:10.32604/iasc.2021.012813 - 07 January 2021

    Abstract Community structure is a key component in complex network systems. This paper aims to improve the effectiveness of community detection and community discovery in complex network systems by providing directions for the reconstruction and optimization of community structures to expand the application of intelligent optimization algorithms in community structures. First, deep learning algorithms and ant colony algorithms are used to elaborate the community detection and community discovery in complex networks. Next, we introduce the technology of transfer learning and propose an algorithm of deep self-encoder modeling based on transfer learning (DSEM-TL). The DSEM-TL algorithm’s indicators… More >

  • Open Access

    ARTICLE

    An Ant Colony Optimization Algorithm for Stacking Sequence Design of Composite Laminates

    F. Aymerich1, M. Serra2

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.1, pp. 49-66, 2006, DOI:10.3970/cmes.2006.013.049

    Abstract The study reported in this paper explores the potential of Ant Colony Optimization (ACO) metaheuristic for stacking sequence optimization of composite laminates. ACO is a recently proposed population-based search approach able to deal with a wide range of optimization problems, especially of a combinatorial nature, and inspired by the natural foraging behavior of ant colonies. ACO search processes, in which the activities of real ants are simulated by means of artificial agents that communicate and cooperate through the modification of the local environment, were implemented in a specifically developed numerical algorithm aimed at the lay-up… More >

Displaying 1-10 on page 1 of 5. Per Page