Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    PROCEEDINGS

    A Crystal Plasticity Based Constitutive Model for the Temperature Dependent Anomalous Behaviors of Nickel-Based Single-Crystal Superalloy

    Xueling Fan1,*, Pin Lu1, Xiaochao Jin1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09919

    Abstract Ni-based single crystal superalloys have been favored in the high-temperature service zones of aeroengine and gas turbine due to its excellent mechanical properties at high temperature. It is very significant to construct a constitutive model that can accurately capture the mechanical response of Ni-based single crystals for simulation analysis. In this work, a forest dislocation density-based single crystal plasticity constitutive model was developed to capture the mechanical behavior of Ni-based single crystals, including the temperature dependent anomalous yield and tension/compression asymmetry. Firstly, thermally activated cross-slip mechanism was introduced into the hardening model to describe the… More >

  • Open Access

    ARTICLE

    Anomalous Situations Recognition in Surveillance Images Using Deep Learning

    Qurat-ul-Ain Arshad1, Mudassar Raza1, Wazir Zada Khan2, Ayesha Siddiqa2, Abdul Muiz2, Muhammad Attique Khan3,*, Usman Tariq4, Taerang Kim5, Jae-Hyuk Cha5,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1103-1125, 2023, DOI:10.32604/cmc.2023.039752 - 08 June 2023

    Abstract Anomalous situations in surveillance videos or images that may result in security issues, such as disasters, accidents, crime, violence, or terrorism, can be identified through video anomaly detection. However, differentiating anomalous situations from normal can be challenging due to variations in human activity in complex environments such as train stations, busy sporting fields, airports, shopping areas, military bases, care centers, etc. Deep learning models’ learning capability is leveraged to identify abnormal situations with improved accuracy. This work proposes a deep learning architecture called Anomalous Situation Recognition Network (ASRNet) for deep feature extraction to improve the… More >

  • Open Access

    ARTICLE

    Identification of Anomalous Behavioral Patterns in Crowd Scenes

    Muhammad Asif Nauman*, Muhammad Shoaib

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 925-939, 2022, DOI:10.32604/cmc.2022.022147 - 03 November 2021

    Abstract Real time crowd anomaly detection and analyses has become an active and challenging area of research in computer vision since the last decade. The emerging need of crowd management and crowd monitoring for public safety has widen the countless paths of deep learning methodologies and architectures. Although, researchers have developed many sophisticated algorithms but still it is a challenging and tedious task to manage and monitor crowd in real time. The proposed research work focuses on detection of local and global anomaly detection of crowd. Fusion of spatial-temporal features assist in differentiation of feature trained… More >

  • Open Access

    ARTICLE

    Few-Shot Learning for Discovering Anomalous Behaviors in Edge Networks

    Merna Gamal1, Hala M. Abbas2, Nour Moustafa3,*, Elena Sitnikova3, Rowayda A. Sadek1

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1823-1837, 2021, DOI:10.32604/cmc.2021.012877 - 21 July 2021

    Abstract Intrusion Detection Systems (IDSs) have a great interest these days to discover complex attack events and protect the critical infrastructures of the Internet of Things (IoT) networks. Existing IDSs based on shallow and deep network architectures demand high computational resources and high volumes of data to establish an adaptive detection engine that discovers new families of attacks from the edge of IoT networks. However, attackers exploit network gateways at the edge using new attacking scenarios (i.e., zero-day attacks), such as ransomware and Distributed Denial of Service (DDoS) attacks. This paper proposes new IDS based on… More >

Displaying 1-10 on page 1 of 4. Per Page