CMES: The Application Channel for the 2022 Young Researcher Award is now Open
Empowering Human Decision-Making in AI Models: The Path to Trust and Transparency
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4987-5004, 2022, DOI:10.32604/cmc.2022.020544
Abstract In machine learning, sentiment analysis is a technique to find and analyze the sentiments hidden in the text. For sentiment analysis, annotated data is a basic requirement. Generally, this data is manually annotated. Manual annotation is time consuming, costly and laborious process. To overcome these resource constraints this research has proposed a fully automated annotation technique for aspect level sentiment analysis. Dataset is created from the reviews of ten most popular songs on YouTube. Reviews of five aspects—voice, video, music, lyrics and song, are extracted. An N-Gram based technique is proposed. Complete dataset consists of 369436 reviews that took 173.53… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 47-63, 2021, DOI:10.32604/cmes.2021.017491
Abstract In the era of big data, E-commerce plays an increasingly important role, and steel E-commerce certainly occupies a positive position. However, it is very difficult to choose satisfactory steel raw materials from diverse steel commodities online on steel E-commerce platforms in the purchase of staffs. In order to improve the efficiency of purchasers searching for commodities on the steel E-commerce platforms, we propose a novel deep learning-based loss function for named entity recognition (NER). Considering the impacts of small sample and imbalanced data, in our NER scheme, the focal loss, the label smoothing, and the cross entropy are incorporated into… More >