Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (883)
  • Open Access

    ARTICLE

    Unmanned Ship Identification Based on Improved YOLOv8s Algorithm

    Chun-Ming Wu1, Jin Lei1,*, Wu-Kai Liu1, Mei-Ling Ren1, Ling-Li Ran2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3071-3088, 2024, DOI:10.32604/cmc.2023.047062

    Abstract Aiming at defects such as low contrast in infrared ship images, uneven distribution of ship size, and lack of texture details, which will lead to unmanned ship leakage misdetection and slow detection, this paper proposes an infrared ship detection model based on the improved YOLOv8 algorithm (R_YOLO). The algorithm incorporates the Efficient Multi-Scale Attention mechanism (EMA), the efficient Reparameterized Generalized-feature extraction module (CSPStage), the small target detection header, the Repulsion Loss function, and the context aggregation block (CABlock), which are designed to improve the model’s ability to detect targets at multiple scales and the speed of model inference. The algorithm… More >

  • Open Access

    REVIEW

    A Systematic Literature Review of Machine Learning and Deep Learning Approaches for Spectral Image Classification in Agricultural Applications Using Aerial Photography

    Usman Khan1, Muhammad Khalid Khan1, Muhammad Ayub Latif1, Muhammad Naveed1,2,*, Muhammad Mansoor Alam2,3,4, Salman A. Khan1, Mazliham Mohd Su’ud2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 2967-3000, 2024, DOI:10.32604/cmc.2024.045101

    Abstract Recently, there has been a notable surge of interest in scientific research regarding spectral images. The potential of these images to revolutionize the digital photography industry, like aerial photography through Unmanned Aerial Vehicles (UAVs), has captured considerable attention. One encouraging aspect is their combination with machine learning and deep learning algorithms, which have demonstrated remarkable outcomes in image classification. As a result of this powerful amalgamation, the adoption of spectral images has experienced exponential growth across various domains, with agriculture being one of the prominent beneficiaries. This paper presents an extensive survey encompassing multispectral and hyperspectral images, focusing on their… More >

  • Open Access

    ARTICLE

    Road Traffic Monitoring from Aerial Images Using Template Matching and Invariant Features

    Asifa Mehmood Qureshi1, Naif Al Mudawi2, Mohammed Alonazi3, Samia Allaoua Chelloug4, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3683-3701, 2024, DOI:10.32604/cmc.2024.043611

    Abstract Road traffic monitoring is an imperative topic widely discussed among researchers. Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides. However, aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area. To this end, different models have shown the ability to recognize and track vehicles. However, these methods are not mature enough to produce accurate results in complex road scenes. Therefore, this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts. The extracted frames… More >

  • Open Access

    ARTICLE

    A Real-Time Localization Algorithm for Unmanned Aerial Vehicle Based on Continuous Images Processing

    Peng Geng1,*, Annan Yang2, Yan Liu3

    Journal on Artificial Intelligence, Vol.6, pp. 43-52, 2024, DOI:10.32604/jai.2024.047642

    Abstract This article presents a real-time localization method for Unmanned Aerial Vehicles (UAVs) based on continuous image processing. The proposed method employs the Scale Invariant Feature Transform (SIFT) algorithm to identify key points in multi-scale space and generate descriptor vectors to match identical objects across multiple images. These corresponding points in the image provide pixel positions, which can be combined with transformation equations, allow for the calculation of the UAV’s actual ground position. Additionally, the physical coordinates of matching points in the image can be obtained, corresponding to the UAV’s physical coordinates. The method achieves real-time positioning and tracking during UAV… More >

  • Open Access

    ARTICLE

    A Deep Reinforcement Learning-Based Technique for Optimal Power Allocation in Multiple Access Communications

    Sepehr Soltani1, Ehsan Ghafourian2, Reza Salehi3, Diego Martín3,*, Milad Vahidi4

    Intelligent Automation & Soft Computing, Vol.39, No.1, pp. 93-108, 2024, DOI:10.32604/iasc.2024.042693

    Abstract For many years, researchers have explored power allocation (PA) algorithms driven by models in wireless networks where multiple-user communications with interference are present. Nowadays, data-driven machine learning methods have become quite popular in analyzing wireless communication systems, which among them deep reinforcement learning (DRL) has a significant role in solving optimization issues under certain constraints. To this purpose, in this paper, we investigate the PA problem in a -user multiple access channels (MAC), where transmitters (e.g., mobile users) aim to send an independent message to a common receiver (e.g., base station) through wireless channels. To this end, we first train… More >

  • Open Access

    EDITORIAL

    A Constantly Evolving Journal: Reflecting on 2023

    Une revue en constante évolution : retour sur l’année 2023

    Kristopher Lamore*

    Psycho-Oncologie, Vol.18, No.1, pp. 1-3, 2024, DOI:10.32604/po.2024.050518

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Experimental Study of Heat Transfer in an Insulated Local Heated from Below and Comparison with Simulation by Lattice Boltzmann Method

    Noureddine Abouricha1,*, Ayoub Gounni2, Mustapha El Alami2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 359-375, 2024, DOI:10.32604/fhmt.2024.047632

    Abstract In this paper, experimental and numerical studies of heat transfer in a test local of side heated from below are presented and compared. All the walls, the rest of the floor and the ceiling are made from plywood and polystyrene in sandwich form ( plywood- polystyrene- plywood) just on one of the vertical walls contained a glazed door (). This local is heated during two heating cycles by a square plate of iron the width , which represents the heat source, its temperature is controlled. The plate is heated for two cycles by an adjustable set-point heat source placed just… More >

  • Open Access

    ARTICLE

    Effects of Viscous Dissipation and Periodic Heat Flux on MHD Free Convection Channel Flow with Heat Generation

    Mustafa Abdullah*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 141-156, 2024, DOI:10.32604/fhmt.2024.046788

    Abstract This study investigates the influence of periodic heat flux and viscous dissipation on magnetohydrodynamic (MHD) flow through a vertical channel with heat generation. A theoretical approach is employed. The channel is exposed to a perpendicular magnetic field, while one side experiences a periodic heat flow, and the other side undergoes a periodic temperature variation. Numerical solutions for the governing partial differential equations are obtained using a finite difference approach, complemented by an eigenfunction expansion method for analytical solutions. Visualizations and discussions illustrate how different variables affect the flow velocity and temperature fields. This offers comprehensive insights into MHD flow behavior… More >

  • Open Access

    ARTICLE

    HOT WATER COOLED HEAT SINKS FOR EFFICIENT DATA CENTER COOLING: TOWARDS ELECTRONIC COOLING WITH HIGH EXERGETIC UTILITY

    Peter Kastena, Severin Zimmermanna, Manish K. Tiwaria, Bruno Michelb, Dimos Poulikakosa,*

    Frontiers in Heat and Mass Transfer, Vol.1, No.2, pp. 1-10, 2010, DOI:10.5098/hmt.v1.2.3006

    Abstract Electronic data center cooling using hot water is proposed for high system exergetic utility. The proof-of-principle is provided by numerically modeling a manifold micro-channel heat sink for cooling microprocessors of a data center. An easily achievable 0.5l/min per chip water flow, with 60°C inlet water temperature, is found sufficient to address the typical data center thermal loads. A maximum temperature difference of ~8°C was found between the solid and liquid, confirming small exergetic destruction due to heat transport across a temperature differential. The high water outlet temperature from the heat sink opens the possibility of waste heat recovery applications. More >

  • Open Access

    ARTICLE

    LIQUID WATER DYNAMIC BEHAVIORS IN THE GDL AND GC OF PEMFCS USING LATTICE BOLTZMANN METHOD

    Li Chen, Hui-Bao Luan, Wen-Quan Tao*

    Frontiers in Heat and Mass Transfer, Vol.1, No.2, pp. 1-11, 2010, DOI:10.5098/hmt.v1.2.3002

    Abstract Multi-phase lattice Boltzmann method is applied to investigate liquid water transport in th GDL and GC. The liquid water transport processes in the GDL, near the GDL-GC interfaces and in the GC are discussed. The effects of channel land on liquid water dynamic behaviors and distribution in the GDL and GC are investigated. It is found that channel land covers the GDL-GC interface where liquid water reaches changes the water distribution near the GDL-GC interface and in the GC. While channel land is apart from the GDL-GC interface where liquid water reaches changes the effects of channel land is smaller. More >

Displaying 11-20 on page 2 of 883. Per Page