Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Feature Selection for Activity Recognition from Smartphone Accelerometer Data

    Juan C. Quiroza, Amit Banerjeeb, Sergiu M. Dascaluc, Sian Lun Laua

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 785-793, 2018, DOI:10.1080/10798587.2017.1342400

    Abstract We use the public Human Activity Recognition Using Smartphones (HARUS) data-set to investigate and identify the most informative features for determining the physical activity performed by a user based on smartphone accelerometer and gyroscope data. The HARUS data-set includes 561 time domain and frequency domain features extracted from sensor readings collected from a smartphone carried by 30 users while performing specific activities. We compare the performance of a decision tree, support vector machines, Naive Bayes, multilayer perceptron, and bagging. We report the various classification performances of these algorithms for subject independent cases. Our results show More >

Displaying 1-10 on page 1 of 1. Per Page