Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (76)
  • Open Access

    ARTICLE

    Fuzzy Rule-Based Model to Train Videos in Video Surveillance System

    A. Manju1, A. Revathi2, M. Arivukarasi1, S. Hariharan3, V. Umarani4, Shih-Yu Chen5,*, Jin Wang6

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 905-920, 2023, DOI:10.32604/iasc.2023.038444

    Abstract With the proliferation of the internet, big data continues to grow exponentially, and video has become the largest source. Video big data introduces many technological challenges, including compression, storage, transmission, analysis, and recognition. The increase in the number of multimedia resources has brought an urgent need to develop intelligent methods to organize and process them. The integration between Semantic link Networks and multimedia resources provides a new prospect for organizing them with their semantics. The tags and surrounding texts of multimedia resources are used to measure their semantic association. Two evaluation methods including clustering and retrieval are performed to measure… More >

  • Open Access

    ARTICLE

    Adaptive Kernel Firefly Algorithm Based Feature Selection and Q-Learner Machine Learning Models in Cloud

    I. Mettildha Mary1,*, K. Karuppasamy2

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2667-2685, 2023, DOI:10.32604/csse.2023.031114

    Abstract CC’s (Cloud Computing) networks are distributed and dynamic as signals appear/disappear or lose significance. MLTs (Machine learning Techniques) train datasets which sometime are inadequate in terms of sample for inferring information. A dynamic strategy, DevMLOps (Development Machine Learning Operations) used in automatic selections and tunings of MLTs result in significant performance differences. But, the scheme has many disadvantages including continuity in training, more samples and training time in feature selections and increased classification execution times. RFEs (Recursive Feature Eliminations) are computationally very expensive in its operations as it traverses through each feature without considering correlations between them. This problem can… More >

  • Open Access

    ARTICLE

    Reinforcing Artificial Neural Networks through Traditional Machine Learning Algorithms for Robust Classification of Cancer

    Muhammad Hammad Waseem1, Malik Sajjad Ahmed Nadeem1,*, Ishtiaq Rasool Khan2, Seong-O-Shim3, Wajid Aziz1, Usman Habib4

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4293-4315, 2023, DOI:10.32604/cmc.2023.036710

    Abstract Machine Learning (ML)-based prediction and classification systems employ data and learning algorithms to forecast target values. However, improving predictive accuracy is a crucial step for informed decision-making. In the healthcare domain, data are available in the form of genetic profiles and clinical characteristics to build prediction models for complex tasks like cancer detection or diagnosis. Among ML algorithms, Artificial Neural Networks (ANNs) are considered the most suitable framework for many classification tasks. The network weights and the activation functions are the two crucial elements in the learning process of an ANN. These weights affect the prediction ability and the convergence… More >

  • Open Access

    ARTICLE

    Data Analytics on Unpredictable Pregnancy Data Records Using Ensemble Neuro-Fuzzy Techniques

    C. Vairavel1,*, N. S. Nithya2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2159-2175, 2023, DOI:10.32604/csse.2023.036598

    Abstract The immune system goes through a profound transformation during pregnancy, and certain unexpected maternal complications have been correlated to this transition. The ability to correctly examine, diagnoses, and predict pregnancy-hastened diseases via the available big data is a delicate problem since the range of information continuously increases and is scalable. Many approaches for disease diagnosis/classification have been established with the use of data mining concepts. However, such methods do not provide an appropriate classification/diagnosis model. Furthermore, single learning approaches are used to create the bulk of these systems. Classification issues may be made more accurate by combining predictions from many… More >

  • Open Access

    ARTICLE

    Power Scheduling with Max User Comfort in Smart Home: Performance Analysis and Tradeoffs

    Muhammad Irfan1, Ch. Anwar Ul Hassan2, Faisal Althobiani3, Nasir Ayub4,*, Raja Jalees Ul Hussen Khan5, Emad Ismat Ghandourah6, Majid A. Almas7, Saleh Mohammed Ghonaim3, V. R. Shamji3, Saifur Rahman1

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1723-1740, 2023, DOI:10.32604/csse.2023.035141

    Abstract The smart grid has enabled users to control their home energy more effectively and efficiently. A home energy management system (HEM) is a challenging task because this requires the most effective scheduling of intelligent home appliances to save energy. Here, we presented a meta-heuristic-based HEM system that integrates the Greywolf Algorithm (GWA) and Harmony Search Algorithms (HSA). Moreover, a fusion initiated on HSA and GWA operators is used to optimize energy intake. Furthermore, many knapsacks are being utilized to ensure that peak-hour load usage for electricity customers does not surpass a certain edge. Hybridization has proven beneficial in achieving numerous… More >

  • Open Access

    ARTICLE

    Modified Buffalo Optimization with Big Data Analytics Assisted Intrusion Detection Model

    R. Sheeba1,*, R. Sharmila2, Ahmed Alkhayyat3, Rami Q. Malik4

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1415-1429, 2023, DOI:10.32604/csse.2023.034321

    Abstract Lately, the Internet of Things (IoT) application requires millions of structured and unstructured data since it has numerous problems, such as data organization, production, and capturing. To address these shortcomings, big data analytics is the most superior technology that has to be adapted. Even though big data and IoT could make human life more convenient, those benefits come at the expense of security. To manage these kinds of threats, the intrusion detection system has been extensively applied to identify malicious network traffic, particularly once the preventive technique fails at the level of endpoint IoT devices. As cyberattacks targeting IoT have… More >

  • Open Access

    ARTICLE

    Self-Tuning Parameters for Decision Tree Algorithm Based on Big Data Analytics

    Manar Mohamed Hafez1,*, Essam Eldin F. Elfakharany1, Amr A. Abohany2, Mostafa Thabet3

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 943-958, 2023, DOI:10.32604/cmc.2023.034078

    Abstract Big data is usually unstructured, and many applications require the analysis in real-time. Decision tree (DT) algorithm is widely used to analyze big data. Selecting the optimal depth of DT is time-consuming process as it requires many iterations. In this paper, we have designed a modified version of a (DT). The tree aims to achieve optimal depth by self-tuning running parameters and improving the accuracy. The efficiency of the modified (DT) was verified using two datasets (airport and fire datasets). The airport dataset has 500000 instances and the fire dataset has 600000 instances. A comparison has been made between the… More >

  • Open Access

    ARTICLE

    SNCDM: Spinal Tumor Detection from MRI Images Using Optimized Super-Pixel Segmentation

    T. Merlin Inbamalar1,*, Dhandapani Samiappan2, R. Ramesh3

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1899-1913, 2023, DOI:10.32604/iasc.2023.031202

    Abstract Conferring to the American Association of Neurological Surgeons (AANS) survey, 85% to 99% of people are affected by spinal cord tumors. The symptoms are varied depending on the tumor’s location and size. Up-to-the-minute, back pain is one of the essential symptoms, but it does not have a specific symptom to recognize at the earlier stage. Numerous significant research studies have been conducted to improve spine tumor recognition accuracy. Nevertheless, the traditional systems are consuming high time to extract the specific region and features. Improper identification of the tumor region affects the predictive tumor rate and causes the maximum error-classification problem.… More >

  • Open Access

    ARTICLE

    Heterogeneous Ensemble Feature Selection Model (HEFSM) for Big Data Analytics

    M. Priyadharsini1,*, K. Karuppasamy2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2187-2205, 2023, DOI:10.32604/csse.2023.031115

    Abstract Big Data applications face different types of complexities in classifications. Cleaning and purifying data by eliminating irrelevant or redundant data for big data applications becomes a complex operation while attempting to maintain discriminative features in processed data. The existing scheme has many disadvantages including continuity in training, more samples and training time in feature selections and increased classification execution times. Recently ensemble methods have made a mark in classification tasks as combine multiple results into a single representation. When comparing to a single model, this technique offers for improved prediction. Ensemble based feature selections parallel multiple expert’s judgments on a… More >

  • Open Access

    ARTICLE

    Sentiment Analysis with Tweets Behaviour in Twitter Streaming API

    Kuldeep Chouhan1, Mukesh Yadav2, Ranjeet Kumar Rout3, Kshira Sagar Sahoo4, NZ Jhanjhi5,*, Mehedi Masud6, Sultan Aljahdali6

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1113-1128, 2023, DOI:10.32604/csse.2023.030842

    Abstract Twitter is a radiant platform with a quick and effective technique to analyze users’ perceptions of activities on social media. Many researchers and industry experts show their attention to Twitter sentiment analysis to recognize the stakeholder group. The sentiment analysis needs an advanced level of approaches including adoption to encompass data sentiment analysis and various machine learning tools. An assessment of sentiment analysis in multiple fields that affect their elevations among the people in real-time by using Naive Bayes and Support Vector Machine (SVM). This paper focused on analysing the distinguished sentiment techniques in tweets behaviour datasets for various spheres… More >

Displaying 1-10 on page 1 of 76. Per Page  

Share Link