Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,092)
  • Open Access

    ARTICLE

    Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems

    Sabrina Meddah1,2,*, Sid Ahmed Tadjer3, Abdelhakim Idir4, Kong Fah Tee5,6,*, Mohamed Zinelabidine Doghmane1, Madjid Kidouche1

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 77-103, 2025, DOI:10.32604/sdhm.2024.053541 - 15 November 2024

    Abstract Maintaining the integrity and longevity of structures is essential in many industries, such as aerospace, nuclear, and petroleum. To achieve the cost-effectiveness of large-scale systems in petroleum drilling, a strong emphasis on structural durability and monitoring is required. This study focuses on the mechanical vibrations that occur in rotary drilling systems, which have a substantial impact on the structural integrity of drilling equipment. The study specifically investigates axial, torsional, and lateral vibrations, which might lead to negative consequences such as bit-bounce, chaotic whirling, and high-frequency stick-slip. These events not only hinder the efficiency of drilling… More >

  • Open Access

    ARTICLE

    Moment Redistribution Effect of the Continuous Glass Fiber Reinforced Polymer-Concrete Composite Slabs Based on Static Loading Experiment

    Zhao-Jun Zhang1, Wen-Wei Wang1,2,*, Jing-Shui Zhen1, Bo-Cheng Li1, De-Cheng Cai1, Yang-Yang Du1, Hui Huang2

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 105-123, 2025, DOI:10.32604/sdhm.2024.052506 - 15 November 2024

    Abstract This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer (GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment zone. An experimental bending moment redistribution test was conducted on continuous GFRP-concrete composite slabs, and a calculation method based on the conjugate beam method was proposed. The composite slabs were formed by combining GFRP profiles with a concrete layer and supported on steel beams to create two-span continuous composite slab specimens. Two methods, epoxy resin bonding, and stud connection, were used to connect the composite… More >

  • Open Access

    ARTICLE

    Malfunction Diagnosis of the GTCC System under All Operating Conditions Based on Exergy Analysis

    Xinwei Wang1,2,*, Ming Li1, Hankun Bing1, Dongxing Zhang1, Yuanshu Zhang1

    Energy Engineering, Vol.121, No.12, pp. 3875-3898, 2024, DOI:10.32604/ee.2024.056237 - 22 November 2024

    Abstract After long-term operation, the performance of components in the GTCC system deteriorates and requires timely maintenance. Due to the inability to directly measure the degree of component malfunction, it is necessary to use advanced exergy analysis diagnosis methods to characterize the components’ health condition (degree of malfunction) through operation data of the GTCC system. The dissipative temperature is used to describe the degree of malfunction of different components in the GTCC system, and an advanced exergy analysis diagnostic method is used to establish a database of overall operating condition component malfunctions in the GTCC system.… More >

  • Open Access

    ARTICLE

    Modeling, Simulation, and Risk Analysis of Battery Energy Storage Systems in New Energy Grid Integration Scenarios

    Xiaohui Ye1,*, Fucheng Tan1, Xinli Song2, Hanyang Dai2, Xia Li2, Shixia Mu2, Shaohang Hao2

    Energy Engineering, Vol.121, No.12, pp. 3689-3710, 2024, DOI:10.32604/ee.2024.055200 - 22 November 2024

    Abstract Energy storage batteries can smooth the volatility of renewable energy sources. The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy storage system (BESS). However, the current modeling of grid-connected BESS is overly simplistic, typically only considering state of charge (SOC) and power constraints. Detailed lithium (Li)-ion battery cell models are computationally intensive and impractical for real-time applications and may not be suitable for power grid operating conditions. Additionally, there is a lack of real-time batteries risk assessment frameworks. To address these issues, in this… More >

  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    ARTICLE

    Performance Analysis of Machine Learning-Based Intrusion Detection with Hybrid Feature Selection

    Mohammad Al-Omari1, Qasem Abu Al-Haija2,*

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1537-1555, 2024, DOI:10.32604/csse.2024.056257 - 22 November 2024

    Abstract More businesses are deploying powerful Intrusion Detection Systems (IDS) to secure their data and physical assets. Improved cyber-attack detection and prevention in these systems requires machine learning (ML) approaches. This paper examines a cyber-attack prediction system combining feature selection (FS) and ML. Our technique’s foundation was based on Correlation Analysis (CA), Mutual Information (MI), and recursive feature reduction with cross-validation. To optimize the IDS performance, the security features must be carefully selected from multiple-dimensional datasets, and our hybrid FS technique must be extended to validate our methodology using the improved UNSW-NB 15 and TON_IoT datasets. More >

  • Open Access

    ARTICLE

    Improving Badminton Action Recognition Using Spatio-Temporal Analysis and a Weighted Ensemble Learning Model

    Farida Asriani1,2, Azhari Azhari1,*, Wahyono Wahyono1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3079-3096, 2024, DOI:10.32604/cmc.2024.058193 - 18 November 2024

    Abstract Incredible progress has been made in human action recognition (HAR), significantly impacting computer vision applications in sports analytics. However, identifying dynamic and complex movements in sports like badminton remains challenging due to the need for precise recognition accuracy and better management of complex motion patterns. Deep learning techniques like convolutional neural networks (CNNs), long short-term memory (LSTM), and graph convolutional networks (GCNs) improve recognition in large datasets, while the traditional machine learning methods like SVM (support vector machines), RF (random forest), and LR (logistic regression), combined with handcrafted features and ensemble approaches, perform well but… More >

  • Open Access

    ARTICLE

    Comparative Analysis of Machine Learning Algorithms for Email Phishing Detection Using TF-IDF, Word2Vec, and BERT

    Arar Al Tawil1,*, Laiali Almazaydeh2, Doaa Qawasmeh3, Baraah Qawasmeh4, Mohammad Alshinwan1,5, Khaled Elleithy6

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3395-3412, 2024, DOI:10.32604/cmc.2024.057279 - 18 November 2024

    Abstract Cybercriminals often use fraudulent emails and fictitious email accounts to deceive individuals into disclosing confidential information, a practice known as phishing. This study utilizes three distinct methodologies, Term Frequency-Inverse Document Frequency, Word2Vec, and Bidirectional Encoder Representations from Transformers, to evaluate the effectiveness of various machine learning algorithms in detecting phishing attacks. The study uses feature extraction methods to assess the performance of Logistic Regression, Decision Tree, Random Forest, and Multilayer Perceptron algorithms. The best results for each classifier using Term Frequency-Inverse Document Frequency were Multilayer Perceptron (Precision: 0.98, Recall: 0.98, F1-score: 0.98, Accuracy: 0.98). Word2Vec’s More >

  • Open Access

    REVIEW

    AI-Driven Pattern Recognition in Medicinal Plants: A Comprehensive Review and Comparative Analysis

    Mohd Asif Hajam1, Tasleem Arif1, Akib Mohi Ud Din Khanday2, Mudasir Ahmad Wani3,*, Muhammad Asim3,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2077-2131, 2024, DOI:10.32604/cmc.2024.057136 - 18 November 2024

    Abstract The pharmaceutical industry increasingly values medicinal plants due to their perceived safety and cost-effectiveness compared to modern drugs. Throughout the extensive history of medicinal plant usage, various plant parts, including flowers, leaves, and roots, have been acknowledged for their healing properties and employed in plant identification. Leaf images, however, stand out as the preferred and easily accessible source of information. Manual plant identification by plant taxonomists is intricate, time-consuming, and prone to errors, relying heavily on human perception. Artificial intelligence (AI) techniques offer a solution by automating plant recognition processes. This study thoroughly examines cutting-edge… More >

  • Open Access

    ARTICLE

    Identification of M2 macrophage-related genes for establishing a prognostic model in pancreatic cancer: FCGR3A as key gene

    ZHEN WANG1, JUN FU1, SAISAI ZHU1, HAODONG TANG2, KUI SHI1, JIHUA YANG3, MENG WANG3, MENGGE WU1, DUNFENG QI1,*

    Oncology Research, Vol.32, No.12, pp. 1851-1866, 2024, DOI:10.32604/or.2024.055286 - 13 November 2024

    Abstract Background: Pancreatic ductal adenocarcinoma (PDAC) has a rich and complex tumor immune microenvironment (TIME). M2 macrophages are among the most extensively infiltrated immune cells in the TIME and are necessary for the growth and migration of cancers. However, the mechanisms and targets mediating M2 macrophage infiltration in pancreatic cancer remain elusive. Methods: The M2 macrophage infiltration score of patients was assessed using the xCell algorithm. Using weighted gene co-expression network analysis (WGCNA), module genes associated with M2 macrophages were identified, and a predictive model was designed. The variations in immunological cell patterns, cancer mutations, and… More > Graphic Abstract

    Identification of M2 macrophage-related genes for establishing a prognostic model in pancreatic cancer: <i>FCGR3A</i> as key gene

Displaying 1-10 on page 1 of 3092. Per Page