Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    Hierarchical Optimization Method for Federated Learning with Feature Alignment and Decision Fusion

    Ke Li1,*, Xiaofeng Wang1,2,*, Hu Wang1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1391-1407, 2024, DOI:10.32604/cmc.2024.054484 - 15 October 2024

    Abstract In the realm of data privacy protection, federated learning aims to collaboratively train a global model. However, heterogeneous data between clients presents challenges, often resulting in slow convergence and inadequate accuracy of the global model. Utilizing shared feature representations alongside customized classifiers for individual clients emerges as a promising personalized solution. Nonetheless, previous research has frequently neglected the integration of global knowledge into local representation learning and the synergy between global and local classifiers, thereby limiting model performance. To tackle these issues, this study proposes a hierarchical optimization method for federated learning with feature alignment… More >

  • Open Access

    REVIEW

    A Comprehensive Survey on Deep Learning Multi-Modal Fusion: Methods, Technologies and Applications

    Tianzhe Jiao, Chaopeng Guo, Xiaoyue Feng, Yuming Chen, Jie Song*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1-35, 2024, DOI:10.32604/cmc.2024.053204 - 18 July 2024

    Abstract Multi-modal fusion technology gradually become a fundamental task in many fields, such as autonomous driving, smart healthcare, sentiment analysis, and human-computer interaction. It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities. Under complex scenes, multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions. However, achieving outstanding performance is challenging because of equipment performance limitations, missing information, and data noise. This paper comprehensively reviews existing methods based on multi-modal fusion techniques and completes a detailed and in-depth analysis.… More >

  • Open Access

    ARTICLE

    A Power Data Anomaly Detection Model Based on Deep Learning with Adaptive Feature Fusion

    Xiu Liu, Liang Gu*, Xin Gong, Long An, Xurui Gao, Juying Wu

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4045-4061, 2024, DOI:10.32604/cmc.2024.048442 - 20 June 2024

    Abstract With the popularisation of intelligent power, power devices have different shapes, numbers and specifications. This means that the power data has distributional variability, the model learning process cannot achieve sufficient extraction of data features, which seriously affects the accuracy and performance of anomaly detection. Therefore, this paper proposes a deep learning-based anomaly detection model for power data, which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction. Aiming at the distribution variability of power data, this paper developed a sliding window-based data adjustment method for… More >

  • Open Access

    ARTICLE

    Enhancing Cross-Lingual Image Description: A Multimodal Approach for Semantic Relevance and Stylistic Alignment

    Emran Al-Buraihy, Dan Wang*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3913-3938, 2024, DOI:10.32604/cmc.2024.048104 - 20 June 2024

    Abstract Cross-lingual image description, the task of generating image captions in a target language from images and descriptions in a source language, is addressed in this study through a novel approach that combines neural network models and semantic matching techniques. Experiments conducted on the Flickr8k and AraImg2k benchmark datasets, featuring images and descriptions in English and Arabic, showcase remarkable performance improvements over state-of-the-art methods. Our model, equipped with the Image & Cross-Language Semantic Matching module and the Target Language Domain Evaluation module, significantly enhances the semantic relevance of generated image descriptions. For English-to-Arabic and Arabic-to-English cross-language… More >

  • Open Access

    ARTICLE

    Audio-Text Multimodal Speech Recognition via Dual-Tower Architecture for Mandarin Air Traffic Control Communications

    Shuting Ge1,2, Jin Ren2,3,*, Yihua Shi4, Yujun Zhang1, Shunzhi Yang2, Jinfeng Yang2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3215-3245, 2024, DOI:10.32604/cmc.2023.046746 - 26 March 2024

    Abstract In air traffic control communications (ATCC), misunderstandings between pilots and controllers could result in fatal aviation accidents. Fortunately, advanced automatic speech recognition technology has emerged as a promising means of preventing miscommunications and enhancing aviation safety. However, most existing speech recognition methods merely incorporate external language models on the decoder side, leading to insufficient semantic alignment between speech and text modalities during the encoding phase. Furthermore, it is challenging to model acoustic context dependencies over long distances due to the longer speech sequences than text, especially for the extended ATCC data. To address these issues,… More >

  • Open Access

    ARTICLE

    A Time Series Short-Term Prediction Method Based on Multi-Granularity Event Matching and Alignment

    Haibo Li*, Yongbo Yu, Zhenbo Zhao, Xiaokang Tang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 653-676, 2024, DOI:10.32604/cmc.2023.046424 - 30 January 2024

    Abstract Accurate forecasting of time series is crucial across various domains. Many prediction tasks rely on effectively segmenting, matching, and time series data alignment. For instance, regardless of time series with the same granularity, segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy. However, these events of varying granularity frequently intersect with each other, which may possess unequal durations. Even minor differences can result in significant errors when matching time series with future trends. Besides, directly using matched events but unaligned events as state vectors in machine… More >

  • Open Access

    ARTICLE

    Bearing Fault Diagnosis Based on Deep Discriminative Adversarial Domain Adaptation Neural Networks

    Jinxi Guo1, Kai Chen1,2, Jiehui Liu1, Yuhao Ma2, Jie Wu2,*, Yaochun Wu2, Xiaofeng Xue3, Jianshen Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2619-2640, 2024, DOI:10.32604/cmes.2023.031360 - 15 December 2023

    Abstract Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation of equipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasing attention and achieved some results. It might lead to insufficient performance for using transfer learning alone and cause misclassification of target samples for domain bias when building deep models to learn domain-invariant features. To address the above problems, a deep discriminative adversarial domain adaptation neural network for the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are… More >

  • Open Access

    PROCEEDINGS

    Effects of Alignment and Dislocation on the Impact Mechanical Response of Tandem Nomex Honeycomb

    Y. F. Yin1, X. J. Zhang1,*, Y. X. Lin1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.28, No.1, pp. 1-4, 2023, DOI:10.32604/icces.2023.010481

    Abstract 1 Introduction
    Nomex honeycomb is widely used in aerospace field due to its formability and impact resistance. Tandem honeycomb structure is favored for its excellent energy absorption and controllable deformation sequence [1]. Because impact damage is inevitable in the use of sandwich structures, it is necessary to analyze the impact mechanical response of such structures. The research objects include single honeycomb and two layers align honeycomb. First, the drop weight impact test was carried out to compare the mechanical response of double-layer aligned and staggered honeycomb with that of single honeycomb. Then finite element method was… More >

  • Open Access

    ARTICLE

    Anomaly Detection of UAV State Data Based on Single-Class Triangular Global Alignment Kernel Extreme Learning Machine

    Feisha Hu1, Qi Wang1,*, Haijian Shao1,2, Shang Gao1, Hualong Yu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2405-2424, 2023, DOI:10.32604/cmes.2023.026732 - 09 March 2023

    Abstract Unmanned Aerial Vehicles (UAVs) are widely used and meet many demands in military and civilian fields. With the continuous enrichment and extensive expansion of application scenarios, the safety of UAVs is constantly being challenged. To address this challenge, we propose algorithms to detect anomalous data collected from drones to improve drone safety. We deployed a one-class kernel extreme learning machine (OCKELM) to detect anomalies in drone data. By default, OCKELM uses the radial basis (RBF) kernel function as the kernel function of the model. To improve the performance of OCKELM, we choose a Triangular Global More > Graphic Abstract

    Anomaly Detection of UAV State Data Based on Single-Class Triangular Global Alignment Kernel Extreme Learning Machine

  • Open Access

    ARTICLE

    Modeling and Analysis of UAV-Assisted Mobile Network with Imperfect Beam Alignment

    Mohamed Amine Ouamri1,2, Reem Alkanhel3,*, Cedric Gueguen1, Manal Abdullah Alohali4, Sherif S. M. Ghoneim5

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 453-467, 2023, DOI:10.32604/cmc.2023.031450 - 22 September 2022

    Abstract With the rapid development of emerging 5G and beyond (B5G), Unmanned Aerial Vehicles (UAVs) are increasingly important to improve the performance of dense cellular networks. As a conventional metric, coverage probability has been widely studied in communication systems due to the increasing density of users and complexity of the heterogeneous environment. In recent years, stochastic geometry has attracted more attention as a mathematical tool for modeling mobile network systems. In this paper, an analytical approach to the coverage probability analysis of UAV-assisted cellular networks with imperfect beam alignment has been proposed. An assumption was considered… More >

Displaying 1-10 on page 1 of 31. Per Page