Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    A Deep Learning Driven Feature Based Steganalysis Approach

    Yuchen Li1, Baohong Ling1,2,*, Donghui Hu1, Shuli Zheng1, Guoan Zhang3

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2213-2225, 2023, DOI:10.32604/iasc.2023.029983 - 21 June 2023

    Abstract The goal of steganalysis is to detect whether the cover carries the secret information which is embedded by steganographic algorithms. The traditional steganalysis detector is trained on the stego images created by a certain type of steganographic algorithm, whose detection performance drops rapidly when it is applied to detect another type of steganographic algorithm. This phenomenon is called as steganographic algorithm mismatch in steganalysis. To resolve this problem, we propose a deep learning driven feature-based approach. An advanced steganalysis neural network is used to extract steganographic features, different pairs of training images embedded with steganographic More >

Displaying 1-10 on page 1 of 1. Per Page