Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Research on Leading Edge Erosion and Aerodynamic Characteristics of Wind Turbine Blade Airfoil

    Xin Guan*, Yuqi Xie, Shuaijie Wang, Mingyang Li, Shiwei Wu

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2045-2058, 2024, DOI:10.32604/fdmp.2024.049671 - 23 August 2024

    Abstract The effects of the erosion present on the leading edge of a wind turbine airfoil (DU 96-W-180) on its aerodynamic performances have been investigated numerically in the framework of a SST k–ω turbulence model based on the Reynolds Averaged Navier-Stokes equations (RANS). The results indicate that when sand-induced holes and small pits are involved as leading edge wear features, they have a minimal influence on the lift and drag coefficients of the airfoil. However, if delamination occurs in the same airfoil region, it significantly impacts the lift and resistance characteristics of the airfoil. Specifically, as More >

  • Open Access

    ARTICLE

    Influence of Surface Ice Roughness on the Aerodynamic Performance of Wind Turbines

    Xin Guan1,2,*, Mingyang Li1, Shiwei Wu1, Yuqi Xie1, Yongpeng Sun1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2029-2043, 2024, DOI:10.32604/fdmp.2024.049499 - 23 August 2024

    Abstract The focus of this research was on the equivalent particle roughness height correction required to account for the presence of ice when determining the performances of wind turbines. In particular, two icing processes (frost ice and clear ice) were examined by combining the FENSAP-ICE and FLUENT analysis tools. The ice type on the blade surfaces was predicted by using a multi-time step method. Accordingly, the influence of variations in icing shape and ice surface roughness on the aerodynamic performance of blades during frost ice formation or clear ice formation was investigated. The results indicate that More >

  • Open Access

    ARTICLE

    Optimized Design of Bio-Inspired Wind Turbine Blades

    Yuanjun Dai1,4,*, Dong Wang1, Xiongfei Liu2, Weimin Wu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1647-1664, 2024, DOI:10.32604/fdmp.2024.046158 - 23 July 2024

    Abstract To enhance the aerodynamic performance of wind turbine blades, this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle. Based on the blade element theory, a non-uniform extraction method of blade elements is employed for the optimization design of the considered wind turbine blades. Moreover, Computational Fluid Dynamics (CFD) is used to determine the aerodynamic performances of the eagle airfoil and a NACA2412 airfoil, thereby demonstrating the superior aerodynamic performance of the former. Finally, a mathematical model for optimizing the design of wind turbine blades is introduced and More >

  • Open Access

    ARTICLE

    Influence of Flap Parameters on the Aerodynamic Performance of a Wind-Turbine Airfoil

    Yuanjun Dai1,2, Jingan Cui1, Baohua Li1,*, Cong Wang1, Kunju Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 771-786, 2024, DOI:10.32604/fdmp.2023.029584 - 28 March 2024

    Abstract A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient, lift coefficient, and drag coefficient. The numerical results demonstrate that the flap can effectively improve the lift coefficient of the airfoil; however, at small attack angles, its influence is significantly reduced. When the angle of attack exceeds the critical stall angle and the flap height is 1.5% of the chord length, the influence of the flap becomes very More >

  • Open Access

    PROCEEDINGS

    Understanding of Airfoil Characteristics at High Mach-Low Reynolds Numbers

    Zhaolin Chen1,*, Xiaohui Wei1, Tianhang Xiao1, Ning Qin2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09976

    Abstract A computational study has been conducted on various airfoils to simulate flows at low Reynolds numbers 17,000 and 21,000 with Mach number changes from 0.25 to 0.85 to provide understanding and guidance for Mars rotory wing designs. The computational fluid dynamics tool used in this study is a Reynolds-averaged Navier–Stokes solver with a transition model (k-ω SST γ-Reθ). The airfoils investigated in this study include NACA airfoils (4, 5, and 6% camber), UltraThin airfoils, and thin cambered plates (3% camber, but various maximum camber locations). Airfoils were examined for lift and drag performance as well… More >

  • Open Access

    ARTICLE

    Airfoil Shape Optimisation Using a Multi-Fidelity Surrogate-Assisted Metaheuristic with a New Multi-Objective Infill Sampling Technique

    Cho Mar Aye1, Kittinan Wansaseub2, Sumit Kumar3, Ghanshyam G. Tejani4, Sujin Bureerat1, Ali R. Yildiz5, Nantiwat Pholdee1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2111-2128, 2023, DOI:10.32604/cmes.2023.028632 - 03 August 2023

    Abstract This work presents multi-fidelity multi-objective infill-sampling surrogate-assisted optimization for airfoil shape optimization. The optimization problem is posed to maximize the lift and drag coefficient ratio subject to airfoil geometry constraints. Computational Fluid Dynamic (CFD) and XFoil tools are used for high and low-fidelity simulations of the airfoil to find the real objective function value. A special multi-objective sub-optimization problem is proposed for multiple points infill sampling exploration to improve the surrogate model constructed. To validate and further assess the proposed methods, a conventional surrogate-assisted optimization method and an infill sampling surrogate-assisted optimization criterion are applied More > Graphic Abstract

    Airfoil Shape Optimisation Using a Multi-Fidelity Surrogate-Assisted Metaheuristic with a New Multi-Objective Infill Sampling Technique

  • Open Access

    ARTICLE

    Optimized Design of H-Type Vertical Axis Wind Airfoil at Multiple Angles of Attack

    Chunyan Zhang1, Shuaishuai Wang1,2, Yinhu Qiao1,*, Zhiqiang Zhang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2661-2679, 2023, DOI:10.32604/fdmp.2023.028059 - 25 June 2023

    Abstract Numerical simulations are conducted to improve the energy acquisition efficiency of H-type vertical axis wind turbines through the optimization of the related blade airfoil aerodynamic performance. The Bézier curve is initially used to fit the curve profile of a NACA2412 airfoil, and the moving asymptote algorithm is then exploited to optimize the design of the considered H-type vertical-axis wind-turbine blade airfoil for a certain attack angle. The results show that the maximum lift coefficient of the optimized airfoil is 8.33% higher than that of the original airfoil. The maximum lift-to-drag ratio of the optimized airfoil More > Graphic Abstract

    Optimized Design of H-Type Vertical Axis Wind Airfoil at Multiple Angles of Attack

  • Open Access

    ARTICLE

    Simulation of Vertical Solar Power Plants with Different Turbine Blades

    Yuxing Yang, Peng Zhang*, Meng Lv

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1397-1409, 2023, DOI:10.32604/fdmp.2023.024916 - 30 January 2023

    Abstract The performances of turbine blades have a significant impact on the energy conversion efficiency of vertical solar power plants. In the present study, such a relationship is assessed by considering two kinds of airfoil blades, designed by using the Wilson theory. In particular, numerical simulations are conducted using the SST K − ω model and assuming a wind speed of 3–6 m/s and seven or eight blades. The two airfoils are the NACA63121 (with a larger chord length) and the AMES63212; It is shown that the torsion angle of the former is smaller, and its wind drag More > Graphic Abstract

    Simulation of Vertical Solar Power Plants with Different Turbine Blades

  • Open Access

    ARTICLE

    STUDY ON THERMAL-HYDRAULIC PERFORMANCE OF THE PRINTED CIRCUIT HEAT EXCHANGER WITH AIRFOIL FINS FOR SUPERCRITICAL LIQUEFIED NATURAL GAS

    Yulin Tiana , Chengyi Longb, Linghong Tanga,*

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-11, 2022, DOI:10.5098/hmt.19.18

    Abstract In this study, the thermal-hydraulic performance of eight different printed circuit heat exchanger (PCHE) configurations with supercritical liquefied natural gas as the working fluid are studied by a numerical method. Firstly, the thermal-hydraulic performance of the PCHE with different airfoil fins are investigated at different operating pressures, which indicate that the PCHE with airfoil fins has better thermal performance but worse hydraulic performance when it operates at higher pressure condition. Furthermore, the effects of different airfoil configurations on the thermal-hydraulic performance are analyzed in detail. The results show that asymmetric airfoils can provide better heat More >

  • Open Access

    ARTICLE

    Research on the Change of Airfoil Geometric Parameters of Horizontal Axis Wind Turbine Blades Caused by Atmospheric Icing

    Xiyang Li1, Yuhao Jia2, Hui Zhang1,*, Bin Cheng1

    Energy Engineering, Vol.119, No.6, pp. 2549-2567, 2022, DOI:10.32604/ee.2022.020854 - 14 September 2022

    Abstract Icing can significantly change the geometric parameters of wind turbine blades, which in turn, can reduce the aerodynamic characteristics of the airfoil. In-depth research is conducted in this study to identify the reasons for the decline of wind power equipment performance through the icing process. An accurate experimental test method is proposed in a natural environment that examines the growth and distribution of ice formation over the airfoil profile. The mathematical models of the airfoil chord length, camber, and thickness are established in order to investigate the variation of geometric airfoil parameters under different icing… More >

Displaying 1-10 on page 1 of 24. Per Page