Chuanchuan Wang1,2, Ahmad Sufril Azlan Mohamed2,*, Xiao Yang 2, Hao Zhang 2, Xiang Li1, Mohd Halim Bin Mohd Noor 2
CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 855-874, 2025, DOI:10.32604/cmc.2025.066343
- 29 August 2025
Abstract Classroom behavior recognition is a hot research topic, which plays a vital role in assessing and improving the quality of classroom teaching. However, existing classroom behavior recognition methods have challenges for high recognition accuracy with datasets with problems such as scenes with blurred pictures, and inconsistent objects. To address this challenge, we proposed an effective, lightweight object detector method called the RFNet model (YOLO-FR). The YOLO-FR is a lightweight and effective model. Specifically, for efficient multi-scale feature extraction, effective feature pyramid shared convolutional (FPSC) was designed to improve the feature extract performance by leveraging convolutional… More >