Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Effect of Process Parameters on the Agglomeration Behavior and Tensile Response of Graphene Reinforced Magnesium Matrix Composites Based on Molecular Dynamics Model

    Chentong Zhao1, Jiming Zhou1,2,*, Xujiang Chao1,3, Su Wang1, Lehua Qi1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2453-2469, 2024, DOI:10.32604/cmes.2024.052723 - 31 October 2024

    Abstract The mechanical properties of graphene reinforced composites are often hampered by challenges related to the dispersion and aggregation of graphene within the matrix. This paper explores the mechanism of cooling rate, process temperature, and process pressure’s influence on the agglomeration behavior of graphene and the tensile response of composites from a computer simulation technology, namely molecular dynamics. Our findings reveal that the cooling rate exerts minimal influence on the tensile response of composites. Conversely, processing temperature significantly affects the degree of graphene aggregation, with higher temperatures leading to the formation of larger-sized graphene clusters. In More >

  • Open Access

    PROCEEDINGS

    Multiscale Modeling and Application of Strain-Dependent Piezoresistive Behavior in Porous MWCNT/Polymer Nanocomposites

    Zefu Li1, Weidong Yang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011671

    Abstract For composite materials incorporating porous structures with multi-walled carbon nanotubes (MWCNTs), the effects of pores and MWCNT agglomeration significantly impact electrical conductivity. Theoretical modeling of the piezoresistive behavior is crucial for understanding the electromechanical response of porous MWCNT/polymer nanocomposites. Currently, there is limited theoretical modeling that considers the combined effects of porosity and MWCNT agglomeration on the electrical conductivity and piezoresistive performance of porous MWCNT/polymer composites. Addressing this gap, this paper presents a multiscale modeling approach for the strain-dependent piezoresistive behavior of porous MWCNT/polymer nanocomposites. The model considers the influence of porosity and MWCNT agglomeration, More >

  • Open Access

    ARTICLE

    Analysis of the Agglomeration of Powder in a Coaxial Powder Feeding Nozzle Used for Laser Energy Deposition

    Chenguang Guo1,2,*, Yu Sun1,2, Qiang Li1, Haitao Yue1, Chuang Wang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 349-370, 2021, DOI:10.32604/fdmp.2021.013535 - 02 April 2021

    Abstract

    To improve the agglomeration of powder in a coaxial powder feeding nozzle used in the frame of a laser energy deposition technique, the influence of several parameters must be carefully assessed. In the present study the problem is addressed by means of numerical simulations based on a DEM-CFD (Discrete Element Method and Discrete Element Method) coupled model. The influence of the powder flow concentration, powder flow focal length and the amount of powder at the nozzle outlet on the rate of convergence of the powder flow is considered. The role played by the nozzle outlet

    More >

  • Open Access

    ARTICLE

    Agglomeration Effects on Static Stability Analysis of Multi-Scale Hybrid Nanocomposite Plates

    Farzad Ebrahimi1, Ali Dabbagh2, Abbas Rastgoo2, Timon Rabczuk3, *

    CMC-Computers, Materials & Continua, Vol.63, No.1, pp. 41-64, 2020, DOI:10.32604/cmc.2020.07947 - 30 March 2020

    Abstract We propose a multiscale approach to study the influence of carbon nanotubes’ agglomeration on the stability of hybrid nanocomposite plates. The hybrid nanocomposite consists of both macro- and nano-scale reinforcing fibers dispersed in a polymer matrix. The equivalent material properties are calculated by coupling the Eshelby-Mori-Tanaka model with the rule of mixture accounting for effects of CNTs inside the generated clusters. Furthermore, an energy based approach is implemented to obtain the governing equations of the problem utilizing a refined higher-order plate theorem. Subsequently, the derived equations are solved by Galerkin’s analytical method to predict the More >

  • Open Access

    ARTICLE

    A COMPARATIVE STUDY ON THERMAL CONDUCTIVITY AND RHEOLOGY PROPERTIES OF ALUMINA AND MULTI-WALLED CARBON NANOTUBE NANOFLUIDS

    Zan Wua, Zhaozan Fengb, Bengt Sundéna,*, Lars Wadsöc

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-10, 2014, DOI:10.5098/hmt.5.18

    Abstract Thermal conductivity and rheology behavior of two aqueous nanofluids, i.e., alumina and multi-walled carbon nanotube (MWCNT) nanofluids, were experimentally investigated and compared with previous analytical models. Information about the possible agglomeration size and interfacial thermal resistance in the nanofluids were obtained and partially validated. By incorporating the effects of interfacial thermal resistance, a revised model was found to accurately reproduce the experimental data based on the agglomeration size extracted from the rheology analysis. In addition, the thermal conductivity change of the alumina/water nanofluid with elapsed time was investigated. Thermal conductivity measurements were also conducted for More >

  • Open Access

    ARTICLE

    Effect of CNT Agglomeration on the Electrical Conductivity and Percolation Threshold of Nanocomposites: A Micromechanics-based Approach

    B.J. Yang1, K.J. Cho1, G.M. Kim1, H.K. Lee1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.5, pp. 343-365, 2014, DOI:10.3970/cmes.2014.103.343

    Abstract The addition of carbon nanotubes (CNTs) to a matrix material is expected to lead to an increase in the effective electrical properties of nanocomposites. However, a CNT entanglement caused by the matrix viscosity and the high aspect ratio of the nanotubes often inhibits the formation of a conductive network. In the present study, the micromechanics-based model is utilized to investigate the effect of CNT agglomeration on the electrical conductivity and percolation threshold of nanocomposites. A series of parametric studies considering various shapes and curviness distributions of CNTs are carried out to examine the effects of More >

  • Open Access

    ARTICLE

    Nearest Particle Distance and the Statistical Distribution of Agglomerates from a Model of a Finite Set of Particles

    J. Zidek1,2, J. Kucera1, J. Jancar1,2

    CMC-Computers, Materials & Continua, Vol.24, No.3, pp. 183-208, 2011, DOI:10.3970/cmc.2011.024.183

    Abstract The structural analysis of a particulate composite with randomly distributed hard spheres is presented based on a model proposed earlier. The structural factors considered include the distribution of interparticle distances and the conditions for particle agglomeration. The interparticle distance was characterized by the nearest particle distance (NPD) and the distance derived from Delaunay triangulation (DT). The distances were calculated for every particle in the particle set and analyzed in the form of a cumulative distribution function (CDF). The CDF provides two parameters: the representation of particles which are in very close proximity to their neighbors More >

Displaying 1-10 on page 1 of 7. Per Page