Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Research on Leading Edge Erosion and Aerodynamic Characteristics of Wind Turbine Blade Airfoil

    Xin Guan*, Yuqi Xie, Shuaijie Wang, Mingyang Li, Shiwei Wu

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2045-2058, 2024, DOI:10.32604/fdmp.2024.049671 - 23 August 2024

    Abstract The effects of the erosion present on the leading edge of a wind turbine airfoil (DU 96-W-180) on its aerodynamic performances have been investigated numerically in the framework of a SST k–ω turbulence model based on the Reynolds Averaged Navier-Stokes equations (RANS). The results indicate that when sand-induced holes and small pits are involved as leading edge wear features, they have a minimal influence on the lift and drag coefficients of the airfoil. However, if delamination occurs in the same airfoil region, it significantly impacts the lift and resistance characteristics of the airfoil. Specifically, as More >

  • Open Access

    ARTICLE

    Influence of Surface Ice Roughness on the Aerodynamic Performance of Wind Turbines

    Xin Guan1,2,*, Mingyang Li1, Shiwei Wu1, Yuqi Xie1, Yongpeng Sun1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2029-2043, 2024, DOI:10.32604/fdmp.2024.049499 - 23 August 2024

    Abstract The focus of this research was on the equivalent particle roughness height correction required to account for the presence of ice when determining the performances of wind turbines. In particular, two icing processes (frost ice and clear ice) were examined by combining the FENSAP-ICE and FLUENT analysis tools. The ice type on the blade surfaces was predicted by using a multi-time step method. Accordingly, the influence of variations in icing shape and ice surface roughness on the aerodynamic performance of blades during frost ice formation or clear ice formation was investigated. The results indicate that More >

  • Open Access

    ARTICLE

    Study on the Relationship between Structural Aspects and Aerodynamic Characteristics of Archimedes Spiral Wind Turbines

    Yuanjun Dai1,2,3,*, Zetao Deng1, Baohua Li2, Lei Zhong1, Jianping Wang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1517-1537, 2024, DOI:10.32604/fdmp.2024.046828 - 23 July 2024

    Abstract A combined experimental and numerical research study is conducted to investigate the complex relationship between the structure and the aerodynamic performances of an Archimedes spiral wind turbine (ASWT). Two ASWTs are considered, a prototypical version and an improved version. It is shown that the latter achieves the best aerodynamic performance when the spread angles at the three sets of blades are α = 30°, α = 55°, α = 60°, respectively and the blade thickness is 4 mm. For a velocity V = 10 m/s, a tip speed ratio (TSR) = 1.58 and 2, the maximum C values More > Graphic Abstract

    Study on the Relationship between Structural Aspects and Aerodynamic Characteristics of Archimedes Spiral Wind Turbines

  • Open Access

    ARTICLE

    Impact of Blade-Flapping Vibration on Aerodynamic Characteristics of Wind Turbines under Yaw Conditions

    Shaokun Liu1, Zhiying Gao1,2,*, Rina Su1,2, Mengmeng Yan1, Jianwen Wang1,2

    Energy Engineering, Vol.121, No.8, pp. 2213-2229, 2024, DOI:10.32604/ee.2024.049616 - 19 July 2024

    Abstract Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied, the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena is poorly understood. This study aims to investigate the effects of second-order flapwise vibration on the mean and fluctuation characteristics of the torque and axial thrust of wind turbines under yaw conditions using computational fluid dynamics (CFD). In the CFD model, the blades are segmented radially to comprehensively analyze the distribution patterns of torque, axial load, and tangential load. The following results are… More >

  • Open Access

    ARTICLE

    Influence of Flap Parameters on the Aerodynamic Performance of a Wind-Turbine Airfoil

    Yuanjun Dai1,2, Jingan Cui1, Baohua Li1,*, Cong Wang1, Kunju Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 771-786, 2024, DOI:10.32604/fdmp.2023.029584 - 28 March 2024

    Abstract A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient, lift coefficient, and drag coefficient. The numerical results demonstrate that the flap can effectively improve the lift coefficient of the airfoil; however, at small attack angles, its influence is significantly reduced. When the angle of attack exceeds the critical stall angle and the flap height is 1.5% of the chord length, the influence of the flap becomes very More >

  • Open Access

    ARTICLE

    Experimental and Numerical Investigation on the Aerodynamic Characteristics of High-Speed Pantographs with Supporting Beam Wind Deflectors

    Shiyang Song1,*, Tongxin Han2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 127-145, 2024, DOI:10.32604/fdmp.2023.030137 - 08 November 2023

    Abstract Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips, which exacerbates wear and affects the current collection performance of the pantograph-catenary system, a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics (CFD) simulations. The results demonstrate that the size, position, and installation orientation of the wind deflectors significantly influence the amount of force compensation. They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards, thereby forming a “π” shape. Moreover, the lift force More >

  • Open Access

    ARTICLE

    Refined Aerodynamic Test of Wide-Bodied Aircraft and Its Application

    Dawei Liu, Zhiwei Jin, Xin Peng*, Gang Liu, Yue Zhang

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2691-2713, 2023, DOI:10.32604/cmes.2023.026048 - 09 March 2023

    Abstract The large dual-channel wide-bodied aircraft has a long range and a high cruise Mach number. Therefore, its aerodynamic design requires a high level of wind tunnel test refinement. Based on the requirements of aerodynamic design for the future wide-bodied aircraft and the characteristics of high-speed wind tunnel tests, the error theory is introduced to analyze the factors affecting the accuracy of the test data. This study carries out a series of research on the improvement of refined aerodynamic test technology in an FL-26 wind tunnel, including design and optimization of the support system of wide-bodied… More >

  • Open Access

    ARTICLE

    Numerical Simulation Research on Static Aeroelastic Effect of the Transonic Aileron of a High Aspect Ratio Aircraf

    Hongtao Guo, Changrong Zhang, Binbin Lv, Li Yu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.3, pp. 991-1010, 2022, DOI:10.32604/cmes.2022.020638 - 27 June 2022

    Abstract The static aeroelastic effect of aircraft ailerons with high aspect ratio at transonic velocity is investigated in this paper by the CFD/CSD fluid-structure coupling numerical simulation. The influences of wing static aeroelasticity and the ‘scissor opening’ gap width between aileron control surface and the main wing surface on aileron efficiency are mainly explored. The main purpose of this paper is to provide technical support for the wind tunnel experimental model of aileron static aeroelasticity. The results indicate that the flight dynamic pressure has a great influence on the static aeroelastic effect of ailerons, and the… More >

  • Open Access

    ARTICLE

    Computational Simulation of Turbulent Flow Around Tractor-Trailers

    D. O. Redchyts1, E. A. Shkvar2, *, S. V. Moiseienko3

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.1, pp. 91-103, 2020, DOI:10.32604/fdmp.2020.07933 - 01 February 2020

    Abstract A method to evaluate the properties of turbulent flow in proximity to the vehicle and close to the ground surface has been elaborated. Numerical simulations have been performed on the basis of the Unsteady Reynolds-averaged Navier-Stokes equations (URANS) written with respect to an arbitrary curvilinear coordinate system. These equations have been solved using the Spalart-Allmaras differential one-parametric turbulence model. The method of artificial compressibility has been used to improve the coupling of pressure and velocity in the framework of a finite volume approach. Time-averaged distributions of pressure fields, velocity components, streamlines in the entire area… More >

  • Open Access

    ARTICLE

    A Numerical Study of the Aerodynamic Characteristics of a High-Speed Train under the Effect of Crosswind and Rain

    Haiqing Li1, Mengge Yu1, *, Qian Zhang1, Heng Wen1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.1, pp. 77-90, 2020, DOI:10.32604/fdmp.2020.07797 - 01 February 2020

    Abstract The performances of high-speed trains in the presence of coupling effects with crosswind and rain have attracted great attention in recent years. The objective of the present paper was to investigate the aerodynamic characteristics of a high-speed train under such conditions in the framework of an Eulerian-Lagrangian approach. An aerodynamic model of a high-speed train was first set up, and the side force coefficient obtained from numerical simulation was compared with that provided by wind tunnel experiments to verify the accuracy of the approach. Then, the effects of the yaw angle, the resultant wind speed, More >

Displaying 1-10 on page 1 of 12. Per Page