Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (85)
  • Open Access

    ARTICLE

    Tesla-Valve-Based Wind Barriers for Energy Dissipation and Aerodynamic Load Reduction on Trains

    Bo Su1, Mwansa Chambalile1, Shihao He1, Wan Sun2, Enyuan Zhang1, Tong Guo3, Jianming Hao4, Md. Mahbub Alam5,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.076681 - 06 February 2026

    Abstract Predicting the precise impacts of climate change on extreme winds remains challenging, yet strong storms are widely expected to occur more frequently in a warming climate. Wind barriers are commonly used on bridges to reduce aerodynamic loads on trains through blocking effects. This study develops a novel wind barrier based on Tesla valves, which not only blocks incoming flow but also dissipates mechanical energy through fluid collision. To demonstrate this energy-dissipation capability, a Tesla plate is placed in a circular duct to examine its influence on pressure drop. Experimental tests and numerical simulations comparing a… More >

  • Open Access

    REVIEW

    Hypersonic Flow over V-Shaped Leading Edges: A Review of Shock Interactions and Aerodynamic Loads

    Xinyue Dong1, Wei Zhao1, Jingying Wang1,2,*, Shiyue Zhang1, Yue Zhou3, Xinglian Yang1, Chunhian Lee1,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.076238 - 06 February 2026

    Abstract For hypersonic air-breathing vehicles, the V-shaped leading edges (VSLEs) of supersonic combustion ramjet (scramjet) inlets experience complex shock interactions and intense aerodynamic loads. This paper provides a comprehensive review of flow characteristics at the crotch of VSLEs, with particular focus on the transition of shock interaction types and the variation of wall heat flux under different freestream Mach numbers and geometric configurations. The mechanisms governing shock transition, unsteady oscillations, hysteresis, and three-dimensional effects in VSLE flows are first examined. Subsequently, thermal protection strategies aimed at mitigating extreme heating loads are reviewed, emphasizing their relevance to More >

  • Open Access

    ARTICLE

    Low-Reynolds-Number Performance of Micro Radial-Flow Turbines at High Altitudes

    Yanzhao Yang1, Kai Yang2, Junwei Zhang3, Fengsuo Jiang1, Sheng Xu1, Lei Chen4, Jun Bai5, Luyi Lu5, Hua Ji5, Zhihao Jing5, Senhao Wang1, Jingjing Zheng1, Haifeng Zhai1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.075227 - 06 February 2026

    Abstract The low-pressure and low-density conditions encountered at high altitudes significantly reduce the operating Reynolds number of micro radial-flow turbines, frequently bringing it below the self-similarity critical threshold of 3.5 × 104. This departure undermines the applicability of conventional similarity-based design approaches. In this study, micro radial-flow turbines with rotor diameters below 50 mm are investigated through a combined approach integrating high-fidelity numerical simulations with experimental validation, aiming to elucidate the mechanisms by which low Reynolds numbers influence aerodynamic and thermodynamic performance. The results demonstrate that decreasing Reynolds number leads to boundary-layer thickening on blade surfaces, enhanced More >

  • Open Access

    ARTICLE

    Numerical Investigation of Wind Resistance in Inland River Low-Emission Ships

    Guang Chen1, Shiwang Dang1, Fanpeng Kong2, Lingchong Hu1, Zhiming Zhang1, Yi Guo3, Xue Pei1, Jichao Li1,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2721-2740, 2025, DOI:10.32604/fdmp.2025.068889 - 01 December 2025

    Abstract To enhance the navigation efficiency of inland new-energy ships and reduce energy consumption and emissions, this study investigates wind load coefficients under 13 conditions, combining a wind speed of 2.0 m/s with wind direction angles ranging from 0° to 180° in 15° increments. Using Computational Fluid Dynamics (CFD) simulations, the wind load is decomposed into along-course (CX) and transverse (CY) components, and their variation with wind direction is systematically analyzed. Results show that CX is maximal under headwind (0°), decreases approximately following a cosine trend, and reaches its most negative value under tailwind (180°). CY peaks at More >

  • Open Access

    ARTICLE

    Shock-Boundary Layer Interaction in Transonic Flows: Evaluation of Grid Resolution and Turbulence Modeling Effects on Numerical Predictions

    Mehmet Numan Kaya*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 327-343, 2025, DOI:10.32604/cmes.2025.072000 - 30 October 2025

    Abstract This study investigates the influence of mesh resolution and turbulence model selection on the accuracy of numerical simulations for transonic flow, with particular emphasis on shock-boundary layer interaction phenomena. Accurate prediction of such flows is notoriously difficult due to the sensitivity to near-wall resolution, global mesh density, and turbulence model assumptions, and this problem motivates the present work. Two solvers were employed, rhoCentralFoam (unsteady) and TSLAeroFoam (steady-state), both are compressible and density-based and implemented within the OpenFOAM framework. The investigation focuses on three different non-dimensional wall distance (y+) values of 1, 2.5 and 5, each implemented… More >

  • Open Access

    PROCEEDINGS

    Research on Aerodynamic Drag Reduction of Urban Trains Based on Active Control of Wake Flows Using Air Blowing and Suction

    Yinyu Tang1,2,3,*, Mingzhi Yang1,2,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.011292

    Abstract Energy efficiency and environmental sustainability in rail transit are key engineering goals. In urban trains, pressure drag plays a more significant role than in high-speed EMUs, primarily due to the blunt shape of the train’s head. The constraints imposed by underground construction and engineering protocols prevent the optimization strategies used in high-speed EMUs from being applied to urban trains. Therefore, aerodynamic drag reduction in blunt-tail urban trains, through active wake flow control, holds promise for improving train aerodynamics.
    This study investigates drag reduction on the tail car of blunt urban trains using a hybrid numerical and… More >

  • Open Access

    ARTICLE

    CFD Simulation of Passenger Car Aerodynamics and Body Parameter Optimization

    Jichao Li, Xuexin Zhu, Cong Zhang, Shiwang Dang, Guang Chen*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2305-2329, 2025, DOI:10.32604/fdmp.2025.067087 - 30 September 2025

    Abstract The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution. Beyond the promotion of new energy vehicles, reducing aerodynamic drag remains a critical strategy for improving energy efficiency and lowering emissions. This study investigates the influence of key geometric parameters on the aerodynamic drag of vehicles. A parametric vehicle model was developed, and computational fluid dynamics (CFD) simulations were conducted to analyse variations in the drag coefficient () and pressure distribution across different design configurations. The results reveal that More >

  • Open Access

    ARTICLE

    Performance Analysis of sCO2 Centrifugal Compressor under Variable Operating Conditions

    Jiangbo Wu1, Siyi Sun1, Xiaoze Du1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1789-1807, 2025, DOI:10.32604/fdmp.2025.064254 - 12 September 2025

    Abstract This study explores the aerodynamic performance and flow field characteristics of supercritical carbon dioxide (sCO2) centrifugal compressors under varying operating conditions. In particular, the Sandia main compressor impeller model is used as a reference system. Through three-dimensional numerical simulations, we examine the Mach number distribution, temperature field, blade pressure pulsation spectra, and velocity field evolution, and identify accordingly the operating boundaries ensuring stability and the mechanisms responsible for performance degradation. Findings indicate a stable operating range for mass flow rate between 0.74 and 3.74 kg/s. At the lower limit (0.74 kg/s), the maximum Mach number within… More >

  • Open Access

    ARTICLE

    Effect of Streamline Length on Aerodynamic Performance of 600 km/h Maglev Trains

    Yan Li1, Bailong Sun2, Tian Li2,*, Weihua Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1957-1970, 2025, DOI:10.32604/cmes.2025.069159 - 31 August 2025

    Abstract High-speed maglev trains represent a key direction for the future development of rail transportation. As operating speeds increase, they face increasingly severe aerodynamic challenges. The streamlined aerodynamic shape of a maglev train is a critical factor influencing its aerodynamic performance, and optimizing its length plays a significant role in improving the overall aerodynamic characteristics of the train. In this study, a numerical simulation model of a high-speed maglev train was established based on computational fluid dynamics (CFD) to investigate the effects of streamline length on the aerodynamic performance of the train operating on an open… More >

  • Open Access

    ARTICLE

    Uncertainty Quantification of Dynamic Stall Aerodynamics for Large Mach Number Flow around Pitching Airfoils

    Yizhe Han1,2, Guangjing Huang1, Fei Xiao1, Zhiyin Huang3,*, Yuting Dai1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.7, pp. 1657-1671, 2025, DOI:10.32604/fdmp.2025.067528 - 31 July 2025

    Abstract During high-speed forward flight, helicopter rotor blades operate across a wide range of Reynolds and Mach numbers. Under such conditions, their aerodynamic performance is significantly influenced by dynamic stall—a complex, unsteady flow phenomenon highly sensitive to inlet conditions such as Mach and Reynolds numbers. The key features of three-dimensional blade stall can be effectively represented by the dynamic stall behavior of a pitching airfoil. In this study, we conduct an uncertainty quantification analysis of dynamic stall aerodynamics in high-Mach-number flows over pitching airfoils, accounting for uncertainties in inlet parameters. A computational fluid dynamics (CFD) model… More >

Displaying 1-10 on page 1 of 85. Per Page