Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    ED-Ged: Nighttime Image Semantic Segmentation Based on Enhanced Detail and Bidirectional Guidance

    Xiaoli Yuan, Jianxun Zhang*, Xuejie Wang, Zhuhong Chu

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2443-2462, 2024, DOI:10.32604/cmc.2024.052285 - 15 August 2024

    Abstract Semantic segmentation of driving scene images is crucial for autonomous driving. While deep learning technology has significantly improved daytime image semantic segmentation, nighttime images pose challenges due to factors like poor lighting and overexposure, making it difficult to recognize small objects. To address this, we propose an Image Adaptive Enhancement (IAEN) module comprising a parameter predictor (Edip), multiple image processing filters (Mdif), and a Detail Processing Module (DPM). Edip combines image processing filters to predict parameters like exposure and hue, optimizing image quality. We adopt a novel image encoder to enhance parameter prediction accuracy by More >

Displaying 1-10 on page 1 of 1. Per Page