Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Modeling of the Adsorption Allowing for the Changing Adsorbent Activity at Various Stages of the Process

    Marat Satayev1,2,*, Abdugani Azimov2, Arnold Brener2, Nina Alekseyeva1, Zulfia Shakiryanova2

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1533-1558, 2024, DOI:10.32604/fhmt.2024.052901 - 30 October 2024

    Abstract The goal of this work is, first of all, to construct a mathematical model of the mass transfer process in porous adsorption layers, taking into account the fact that in most cases the adsorption process is carried out in non-stationary technological modes, which requires a clear description of its various stages. The scientific contribution of the novel model is based on a probability approach allowing for deriving a differential equation that takes into account the diffusion migration of adsorbed particles. Solving this equation allows us to calculate the reduced degree of the adsorption surface coverage… More >

  • Open Access

    ARTICLE

    Investigation of Polypyrrole and Polypyrrolepolyethyleneimine as Adsorbents for Methyl Orange Dye Adsorption

    NORHABIBAH MOHAMAD1,*, NOORDINI M. SALLEH1,2, HABIBUN NABI MUHAMMAD EKRAMUL MAHMUD1

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 165-189, 2023, DOI:10.32381/JPM.2023.40.3-4.4

    Abstract The present study has explored the adsorption properties of polypyrrole-based adsorbents (polypyrrole and polypyrrole-polyethyleneimine composite) as novel conducting polymers in adsorbing methyl orange (MO) (an anionic dye) effectively from aqueous solution. The adsorption characteristics of the prepared polymer-based adsorbents were characterized by BET, FTIR, FESEM, and XRD methods. The effectiveness of PPy-based adsorbents for MO dye adsorption was examined using the batch adsorption method. Different parameters were changed during the adsorption process, including contact time, solution pH, and adsorbent dosage. The highest BET surface area of the PPy-PEI composite was found to be 11.85 m2 /g,… More >

  • Open Access

    ARTICLE

    Fluoride Ion Adsorption Effect and Adsorption Mechanism of Self-Supported Adsorbent Materials Based on Desulfurization Gypsum-Aluminate Cement

    Xuefeng Song*, Minjuan Sun, Juan He, Lei Wang

    Journal of Renewable Materials, Vol.11, No.12, pp. 4079-4095, 2023, DOI:10.32604/jrm.2023.028885 - 10 November 2023

    Abstract The adsorption method has the advantages of low cost, high efficiency, and environmental friendliness in treating fluorinated wastewater, and the adsorbent material is the key. This study combines the inherent anion-exchange adsorption properties of layered double hydroxides (LDHs). Self-supported porous adsorbent materials loaded with AFm and AFt were prepared from a composite cementitious system consisting of calcium aluminate cement (CAC) and flue gas desulfurization gypsum (FGDG) by chemical foaming technique. The mineral composition of the adsorbent material was characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Through the static adsorption experiment, the adsorption… More > Graphic Abstract

    Fluoride Ion Adsorption Effect and Adsorption Mechanism of Self-Supported Adsorbent Materials Based on Desulfurization Gypsum-Aluminate Cement

  • Open Access

    ARTICLE

    Silica Gel from Chemical Glass Bottle Waste as Adsorbent for Methylene Blue: Optimization Using BBD

    Suprapto Suprapto, Putri Augista Nur Azizah, Yatim Lailun Ni’mah*

    Journal of Renewable Materials, Vol.11, No.12, pp. 4007-4023, 2023, DOI:10.32604/jrm.2023.031210 - 10 November 2023

    Abstract This research focuses on the effective removal of methylene blue dye using silica gel synthesized from chemical glass bottle waste as an environmentally friendly and cost-effective adsorbent. The adsorption process was optimized using Box-Behnken Design (BBD) and Response Surface Methodology (RSM) to investigate the influence of pH (6; 8 and 10), contact time (15; 30 and 45 min), adsorbent mass (30; 50 and 70 mg), and initial concentration (20; 50 and 80 mg/L) of the adsorbate on the adsorption efficiency. The BBD was conducted using Google Colaboratory software, which encompassed 27 experiments with randomly assigned… More > Graphic Abstract

    Silica Gel from Chemical Glass Bottle Waste as Adsorbent for Methylene Blue: Optimization Using BBD

  • Open Access

    REVIEW

    Malachite Green Adsorption Using Carbon-Based and Non-Conventional Adsorbent Made from Biowaste and Biomass: A Review

    Annisa Ardiyanti, Suprapto Suprapto, Yatim Lailun Ni’mah*

    Journal of Renewable Materials, Vol.11, No.11, pp. 3789-3806, 2023, DOI:10.32604/jrm.2023.031354 - 31 October 2023

    Abstract Dyes are pervasive contaminants in wastewater, posing significant health risks to both humans and animals. Among the various methods employed for effective dye removal, adsorption has emerged as a highly promising approach due to its notable advantages, including high efficiency, cost-effectiveness, low energy consumption, and operational simplicity compared to alternative treatments. This comprehensive review focuses on investigating adsorbents derived from biowastes and biomass, specifically carbon-based and non-conventional adsorbents, for the removal of malachite green, a widely used dye known for its toxic and carcinogenic properties. Carbon-based adsorbents encompass two main types: activated carbon and biochar, More > Graphic Abstract

    Malachite Green Adsorption Using Carbon-Based and Non-Conventional Adsorbent Made from Biowaste and Biomass: A Review

  • Open Access

    ARTICLE

    An Experimental Study on Oxidized Mercury Adsorption by Bromide Blended Coal Combustion Fly Ash

    Mingyu Yu1, Mengyuan Liu1, Guangqian Luo1,2,*, Ruize Sun1, Jingyuan Hu1, Hailu Zhu1, Li Zhong3, Lipeng Han3, Xian Li1, Hong Yao1

    Energy Engineering, Vol.118, No.5, pp. 1277-1286, 2021, DOI:10.32604/EE.2021.014810 - 16 July 2021

    Abstract The application of forced mercury oxidation technology would lead to an increase of Hg2+ concentration in the flue gas. Although Hg2+ can be easily removed in the WFGD, the mercury re-emission in the WFGD can decrease the total removal of mercury from coal-fired power plants. Hence, it is necessary to control Hg2+ concentration in the devices before the WFGD. Fly ash adsorbent is considered as a potential alternative for commercial activated carbon adsorbent. However, the adsorption efficiency of the original fly ash is low. Modification procedure is needed to enhance the adsorption performance. In this study, the More >

  • Open Access

    ARTICLE

    Novel Magnetically Interconnected Micro/Macroporous Structure of Monolithic Porous Carbon Adsorbent Derived from Sodium Alginate and Wasted Black Liquor and Its Adsorption Performance**

    Parichart Onsri1, Decha Dechtrirat2,3,4, Patcharakamon Nooeaid5, Apiluck Eiad-ua6, Pongsaton Amornpitoksuk1,7, Supanna Techasakul4, Ahmad Taufiq8, Laemthong Chuenchom1,7,*

    Journal of Renewable Materials, Vol.9, No.6, pp. 1059-1074, 2021, DOI:10.32604/jrm.2021.013362 - 11 March 2021

    Abstract The novel and facile preparation of magnetically interconnected micro/ macroporous structure of monolithic porous carbon adsorbent (MPCA) were designed and presented herein. The synthesis was achieved via conventional freeze-drying and pyrolysis processes. In this study, sodium alginate and wasted black liquor were employed as starting precursors. Sodium alginate acts as a template of materials, whereas black liquor, the wasted product from the paper industry with plentiful of lignin content and alkaline solution, played an essential role in the reinforcement and activation of porosity for the resulting materials. Moreover, both the precursors were well dissolved in Fe3+More >

  • Open Access

    ARTICLE

    Rice Husk Bio-Chars as Adsorbent for Methylene Blue and Ethinylestradiol from Water

    Jonathan Lacuesta1,*, Iris Beatriz Vega Erramuspe2, Liji Sobhana2, Dennis Kronlund3, Jouko Peltonen3, Soledad Gutiérrez1, Pedro Fardim2,4

    Journal of Renewable Materials, Vol.8, No.3, pp. 275-287, 2020, DOI:10.32604/jrm.2020.08861 - 01 March 2020

    Abstract Biobased adsorbents are eco-friendly materials used for water and wastewater treatment and air cleaning. This research work explores the potential use of rice husk chars as a low-cost adsorbent for pollutants from water, such as methylene blue and ethinylestradiol. Rice husk chars are prepared by combustion of rice husks (RH-Char) or pre-treated rice husks (PT-Char). A third char (M-Char) supplied by a local company which uses rice husks as combustion material is also studied. The chars are characterized by field emission scanning electron microscopy (FE-SEM) in conjunction with energy dispersive X-ray spectroscopy (EDX), X-ray powder… More >

  • Open Access

    ARTICLE

    Development of Functional Adsorbent from Natural Biosorbent “Chitosan” by Radiation Induced Grafting of MAETC for the Removal of Arsenic (V)

    VIJAYASRI. K1, ALKA TIWARI1,*, C.V. CHAUDHARI2

    Journal of Polymer Materials, Vol.36, No.1, pp. 53-73, 2019, DOI:10.32381/JPM.2019.36.01.5

    Abstract High energy gamma radiation has been used to graft [2-(methacryloyloxyethyl) trimethylammonium chloride (MAETC) onto chitosan by radiation grafting method. Grafting yield was found to increase with the increase in radiation dose and monomer concentration. Fourier Transform Infrared Spectroscopy (FTIR) was used to characterize the grafted polymer and their morphological structure was analyzed by Scanning Electron Microscope (SEM). As(V) ions uptake capacity of the adsorbent was evaluated in different pH, contact time, temperature, adsorbent dose, and different arsenate ion concentration. The adsorption data was fitted well in the Langmuir model and various static parameters were calculated. More >

  • Open Access

    ARTICLE

    Graphene-Based 3D Xerogel as Adsorbent for Removal of Heavy Metal Ions from Industrial Wastewater

    Purnendu, Soumitra Satapathi*

    Journal of Renewable Materials, Vol.5, No.2, pp. 96-102, 2017, DOI:10.7569/JRM.2016.634134

    Abstract Graphene-based 3D porous xerogel was designed through molecular self-assembly of graphene oxide on chitosan matrix and its application in removal of different heavy metal ions from wastewater was investigated. The synthesized xerogel was characterized through FTIR, SEM, XRD and BET surface area analysis. Heavy metal ions, including Pb(II), Cd(II), and Hg(II), were removed from wastewater using this graphene-chitosan (GO-Cs) xerogel and the removal efficiency was monitored through inductively coupled plasma mass spectrometry (ICP-MS). The effect of GO-Cs composition and pH on adsorption efficiency as well as the kinetics of adsorption was studied in detail. The More >

Displaying 1-10 on page 1 of 10. Per Page