Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Dynamic Adaptive Weighting of Effectiveness Assessment Indicators: Integrating G1, CRITIC and PIVW

    Longyue Li1, Guoqing Zhang1, Bo Cao1, Shuqi Wang2, Ye Tian1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-26, 2026, DOI:10.32604/cmc.2025.070622 - 09 December 2025

    Abstract Modern battlefields exhibit high dynamism, where traditional static weighting methods in combat effectiveness assessment fail to capture real-time changes in indicator values, leading to limited assessment accuracy—especially critical in scenarios like sudden electronic warfare or degraded command, where static weights cannot reflect the operational value decay or surge of key indicators. To address this issue, this study proposes a dynamic adaptive weighting method for evaluation indicators based on G1-CRITIC-PIVW. First, the G1 (Sequential Relationship Analysis Method) subjective weighting method—translates expert knowledge into indicator importance rankings—leverages expert knowledge to quantify the relative importance of indicators via… More >

  • Open Access

    ARTICLE

    FedCW: Client Selection with Adaptive Weight in Heterogeneous Federated Learning

    Haotian Wu1, Jiaming Pei2, Jinhai Li3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069873 - 10 November 2025

    Abstract With the increasing complexity of vehicular networks and the proliferation of connected vehicles, Federated Learning (FL) has emerged as a critical framework for decentralized model training while preserving data privacy. However, efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging. To address these issues, we propose Federated Learning with Client Selection and Adaptive Weighting (FedCW), a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks. FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts More >

  • Open Access

    ARTICLE

    UAV 3D Path Planning Based on Improved Chimp Optimization Algorithm

    Wenli Lei1,2,*, Xinghao Wu1,2, Kun Jia1,2, Jinping Han1,2

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5679-5698, 2025, DOI:10.32604/cmc.2025.061268 - 19 May 2025

    Abstract Aiming to address the limitations of the standard Chimp Optimization Algorithm (ChOA), such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle (UAV) path planning, this paper proposes a three-dimensional path planning method for UAVs based on the Improved Chimp Optimization Algorithm (IChOA). First, this paper models the terrain and obstacle environments spatially and formulates the total UAV flight cost function according to the constraints, transforming the path planning problem into an optimization problem with multiple constraints. Second, this paper enhances the diversity of the chimpanzee population by applying the Sine… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Fingerprint Recognition via Federated Adaptive Domain Generalization

    Yonghang Yan1, Xin Xie1, Hengyi Ren2, Ying Cao1,*, Hongwei Chang3

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5035-5055, 2025, DOI:10.32604/cmc.2025.058276 - 06 March 2025

    Abstract Fingerprint features, as unique and stable biometric identifiers, are crucial for identity verification. However, traditional centralized methods of processing these sensitive data linked to personal identity pose significant privacy risks, potentially leading to user data leakage. Federated Learning allows multiple clients to collaboratively train and optimize models without sharing raw data, effectively addressing privacy and security concerns. However, variations in fingerprint data due to factors such as region, ethnicity, sensor quality, and environmental conditions result in significant heterogeneity across clients. This heterogeneity adversely impacts the generalization ability of the global model, limiting its performance across… More >

  • Open Access

    ARTICLE

    IoT Empowered Early Warning of Transmission Line Galloping Based on Integrated Optical Fiber Sensing and Weather Forecast Time Series Data

    Zhe Li, Yun Liang, Jinyu Wang, Yang Gao*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1171-1192, 2025, DOI:10.32604/cmc.2024.057225 - 03 January 2025

    Abstract Iced transmission line galloping poses a significant threat to the safety and reliability of power systems, leading directly to line tripping, disconnections, and power outages. Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source, neglect of irregular time series, and lack of attention-based closed-loop feedback, resulting in high rates of missed and false alarms. To address these challenges, we propose an Internet of Things (IoT) empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather… More >

  • Open Access

    ARTICLE

    A Novel Framework for Learning and Classifying the Imbalanced Multi-Label Data

    P. K. A. Chitra1, S. Appavu alias Balamurugan2, S. Geetha3, Seifedine Kadry4,5,6, Jungeun Kim7,*, Keejun Han8

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1367-1385, 2024, DOI:10.32604/csse.2023.034373 - 13 September 2024

    Abstract A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning. The main objective of this work is to create a novel framework for learning and classifying imbalanced multi-label data. This work proposes a framework of two phases. The imbalanced distribution of the multi-label dataset is addressed through the proposed Borderline MLSMOTE resampling method in phase 1. Later, an adaptive weighted l21 norm regularized (Elastic-net) multi-label logistic regression is used to predict unseen samples in phase 2. The proposed… More >

  • Open Access

    PROCEEDINGS

    Efficient Multigrid Method Based on Adaptive Weighted Jacobi in Isogeometric Analysis

    ShiJie Luo1, Feng Yang1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09474

    Abstract The isogeometric analysis Method (IGA) is an efficient and accurate engineering analysis method. However, in order to obtain accurate analysis results, the grid must be refined, and the increase of the number of refinements will lead to large-scale equations, which will increase the computational cost. Compared with the traditional equation solvers such as preconditioned conjugate gradient method (PCG), generalized minimal residual (GMRES), the advantage of multigrid method is that the convergence rate is independent of grid scale when solving large-scale equations. This paper presents an adaptive weighted Jacobi method to improve the convergence of geometric… More >

  • Open Access

    ARTICLE

    Research on Reactive Power Optimization of Offshore Wind Farms Based on Improved Particle Swarm Optimization

    Zhonghao Qian1, Hanyi Ma1, Jun Rao2, Jun Hu1, Lichengzi Yu2,*, Caoyi Feng1, Yunxu Qiu1, Kemo Ding1

    Energy Engineering, Vol.120, No.9, pp. 2013-2027, 2023, DOI:10.32604/ee.2023.028859 - 03 August 2023

    Abstract The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms. To improve the voltage stability and reactive power economy of wind farms, the improved particle swarm optimization is used to optimize the reactive power planning in wind farms. First, the power flow of offshore wind farms is modeled, analyzed and calculated. To improve the global search ability and local optimization ability of particle swarm optimization, the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor. Taking the minimum active power… More >

  • Open Access

    ARTICLE

    Adaptive Weighted Flow Net Algorithm for Human Activity Recognition Using Depth Learned Features

    G. Augusta Kani*, P. Geetha

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1447-1469, 2023, DOI:10.32604/csse.2023.035969 - 09 February 2023

    Abstract Human Activity Recognition (HAR) from video data collections is the core application in vision tasks and has a variety of utilizations including object detection applications, video-based behavior monitoring, video classification, and indexing, patient monitoring, robotics, and behavior analysis. Although many techniques are available for HAR in video analysis tasks, most of them are not focusing on behavioral analysis. Hence, a new HAR system analysis the behavioral activity of a person based on the deep learning approach proposed in this work. The most essential aim of this work is to recognize the complex activities that are… More >

  • Open Access

    ARTICLE

    An Improved Bald Eagle Search Algorithm with Cauchy Mutation and Adaptive Weight Factor for Engineering Optimization

    Wenchuan Wang1,*, Weican Tian1, Kwok-wing Chau2, Yiming Xue1, Lei Xu3, Hongfei Zang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1603-1642, 2023, DOI:10.32604/cmes.2023.026231 - 06 February 2023

    Abstract The Bald Eagle Search algorithm (BES) is an emerging meta-heuristic algorithm. The algorithm simulates the hunting behavior of eagles, and obtains an optimal solution through three stages, namely selection stage, search stage and swooping stage. However, BES tends to drop-in local optimization and the maximum value of search space needs to be improved. To fill this research gap, we propose an improved bald eagle algorithm (CABES) that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima. Firstly, CABES introduces the Cauchy mutation strategy to adjust the step size of… More >

Displaying 1-10 on page 1 of 13. Per Page