Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition

    Yi-Chun Lai1, Shu-Yin Chiang2, Yao-Chiang Kan3, Hsueh-Chun Lin4,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3783-3803, 2024, DOI:10.32604/cmc.2024.050376 - 20 June 2024

    Abstract Artificial intelligence (AI) technology has become integral in the realm of medicine and healthcare, particularly in human activity recognition (HAR) applications such as fitness and rehabilitation tracking. This study introduces a robust coupling analysis framework that integrates four AI-enabled models, combining both machine learning (ML) and deep learning (DL) approaches to evaluate their effectiveness in HAR. The analytical dataset comprises 561 features sourced from the UCI-HAR database, forming the foundation for training the models. Additionally, the MHEALTH database is employed to replicate the modeling process for comparative purposes, while inclusion of the WISDM database, renowned… More > Graphic Abstract

    Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition

  • Open Access

    ARTICLE

    Fatigue Life Estimation of High Strength 2090-T83 Aluminum Alloy under Pure Torsion Loading Using Various Machine Learning Techniques

    Mustafa Sami Abdullatef*, Faten N. Alzubaidi, Anees Al-Tamimi, Yasser Ahmed Mahmood

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2083-2107, 2023, DOI:10.32604/fdmp.2023.027266 - 04 April 2023

    Abstract The ongoing effort to create methods for detecting and quantifying fatigue damage is motivated by the high levels of uncertainty in present fatigue-life prediction approaches and the frequently catastrophic nature of fatigue failure. The fatigue life of high strength aluminum alloy 2090-T83 is predicted in this study using a variety of artificial intelligence and machine learning techniques for constant amplitude and negative stress ratios (). Artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), support-vector machines (SVM), a random forest model (RF), and an extreme-gradient tree-boosting model (XGB) are trained using numerical and experimental input… More > Graphic Abstract

    Fatigue Life Estimation of High Strength 2090-T83 Aluminum Alloy under Pure Torsion Loading Using Various Machine Learning Techniques

  • Open Access

    ARTICLE

    An Adaptive Neuro-Fuzzy Inference System to Improve Fractional Order Controller Performance

    N. Kanagaraj*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3213-3226, 2023, DOI:10.32604/iasc.2023.029901 - 17 August 2022

    Abstract The design and analysis of a fractional order proportional integral derivate (FOPID) controller integrated with an adaptive neuro-fuzzy inference system (ANFIS) is proposed in this study. A first order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme. In the proposed adaptive control structure, the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors (λ and µ) of the FOPID (also known as PIλDµ) controller to achieve better control performance. When the plant experiences uncertainties like external load disturbances or sudden changes in the… More >

  • Open Access

    ARTICLE

    Optimum Design for the Magnification Mechanisms Employing Fuzzy Logic–ANFIS

    Ngoc Thai Huynh1, Tien V. T. Nguyen2, Quoc Manh Nguyen3,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5961-5983, 2022, DOI:10.32604/cmc.2022.029484 - 28 July 2022

    Abstract To achieve high work performance for compliant mechanisms of motion scope, continuous work condition, and high frequency, we propose a new hybrid algorithm that could be applied to multi-objective optimum design. In this investigation, we use the tools of finite element analysis (FEA) for a magnification mechanism to find out the effects of design variables on the magnification ratio of the mechanism and then select an optimal mechanism that could meet design requirements. A poly-algorithm including the Grey-Taguchi method, fuzzy logic system, and adaptive neuro-fuzzy inference system (ANFIS) algorithm, was utilized mainly in this study.… More >

  • Open Access

    ARTICLE

    Evaluation of On-Line MPPT Algorithms for PV-Based Battery Storage Systems

    Belqasem Aljafari1, Eydhah Almatrafi2,3,4, Sudhakar Babu Thanikanti5, Sara A. Ibrahim6, Mohamed A. Enany6,*, Marwa M. Ahmed7

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3595-3611, 2022, DOI:10.32604/cmc.2022.030733 - 16 June 2022

    Abstract This paper presents a novel Simulink models with an evaluation study of more widely used On-Line Maximum Power Point tracking (MPPT) techniques for Photo-Voltaic based Battery Storage Systems (PV-BSS). To have a full comparative study in terms of the dynamic response, battery state of charge (SOC), and oscillations around the Maximum Power Point (MPP) of the PV-BSS to variations in climate conditions, these techniques are simulated in Matlab/Simulink. The introduced methodologies are classified into two types; the first type is conventional hill-climbing techniques which are based on instantaneous PV data measurements such as Perturb &… More >

  • Open Access

    ARTICLE

    Secure Dengue Epidemic Prediction System: Healthcare Perspective

    Abdulaziz Aldaej*, Tariq Ahamed Ahanger, Mohammed Yousuf Uddin, Imdad Ullah

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1723-1745, 2022, DOI:10.32604/cmc.2022.027487 - 18 May 2022

    Abstract Viral diseases transmitted by mosquitoes are emerging public health problems across the globe. Dengue is considered to be the most significant mosquito-oriented disease. Conspicuously, the present study provides an effective architecture for Dengue Virus Infection surveillance. The proposed system involves a 4-level architecture for the prediction and prevention of dengue infection outspread. The architectural levels including Dengue Information Acquisition level, Dengue Information Classification level, Dengue-Mining and Extraction level, and Dengue-Prediction and Decision Modeling level enable an individual to periodically monitor his/her probabilistic dengue fever measure. The prediction process is carried out so that proactive measures More >

  • Open Access

    ARTICLE

    Self-Balancing Vehicle Based on Adaptive Neuro-Fuzzy Inference System

    M. L. Ramamoorthy1, S. Selvaperumal2,*, G. Prabhakar3

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 485-497, 2022, DOI:10.32604/iasc.2022.025824 - 15 April 2022

    Abstract The scope of this research is to design and fuse the sensors used in the self-balancing vehicle through Adaptive Neuro-Fuzzy Inference systems (ANFIS) algorithm to optimize the output. The self-balancing vehicle is a wheeled inverted pendulum, which is extremely complex, nonlinear and unstable. Homogeneous and Heterogeneous sensors are involved in this sensor fusion research to identify the best feasible value among them. The data fusion algorithm present inside the controller of the self-balancing vehicle makes the inputs of the homogeneous sensors and heterogeneous sensors separately for ameliorate surrounding perception. Simulation is performed by modeling the… More >

  • Open Access

    ARTICLE

    Machine Learning Enabled Early Detection of Breast Cancer by Structural Analysis of Mammograms

    Mavra Mehmood1, Ember Ayub1, Fahad Ahmad1,6,*, Madallah Alruwaili2, Ziyad A. Alrowaili3, Saad Alanazi2, Mamoona Humayun2, Muhammad Rizwan1, Shahid Naseem4, Tahir Alyas5

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 641-657, 2021, DOI:10.32604/cmc.2021.013774 - 12 January 2021

    Abstract Clinical image processing plays a significant role in healthcare systems and is currently a widely used methodology. In carcinogenic diseases, time is crucial; thus, an image’s accurate analysis can help treat disease at an early stage. Ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) are common types of malignancies that affect both women and men. The number of cases of DCIS and LCIS has increased every year since 2002, while it still takes a considerable amount of time to recommend a controlling technique. Image processing is a powerful technique to analyze preprocessed… More >

  • Open Access

    ARTICLE

    Applying ANN, ANFIS and LSSVM Models for Estimation of Acid Solvent Solubility in Supercritical CO2

    Amin Bemani1, Alireza Baghban2, Shahaboddin Shamshirband3, 4, *, Amir Mosavi5, 6, 7, Peter Csiba7, Annamaria R. Varkonyi-Koczy5, 7

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1175-1204, 2020, DOI:10.32604/cmc.2020.07723 - 30 April 2020

    Abstract In the present work, a novel machine learning computational investigation is carried out to accurately predict the solubility of different acids in supercritical carbon dioxide. Four different machine learning algorithms of radial basis function, multi-layer perceptron (MLP), artificial neural networks (ANN), least squares support vector machine (LSSVM) and adaptive neuro-fuzzy inference system (ANFIS) are used to model the solubility of different acids in carbon dioxide based on the temperature, pressure, hydrogen number, carbon number, molecular weight, and the dissociation constant of acid. To evaluate the proposed models, different graphical and statistical analyses, along with novel More >

Displaying 1-10 on page 1 of 9. Per Page