Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (460)
  • Open Access

    ARTICLE

    How Software Engineering Transforms Organizations: An Open and Qualitative Study on the Organizational Objectives and Motivations in Agile Transformations

    Alonso Alvarez, Borja Bordel Sánchez*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2935-2966, 2024, DOI:10.32604/cmc.2024.056990 - 18 November 2024

    Abstract Agile Transformations are challenging processes for organizations that look to extend the benefits of Agile philosophy and methods beyond software engineering. Despite the impact of these transformations on organizations, they have not been extensively studied in academia. We conducted a study grounded in workshops and interviews with 99 participants from 30 organizations, including organizations undergoing transformations (“final organizations”) and companies supporting these processes (“consultants”). The study aims to understand the motivations, objectives, and factors driving and challenging these transformations. Over 700 responses were collected to the question and categorized into 32 objectives. The findings show More >

  • Open Access

    ARTICLE

    An Adaptive Congestion Control Optimization Strategy in SDN-Based Data Centers

    Jinlin Xu1,2, Wansu Pan1,*, Haibo Tan1,2, Longle Cheng1, Xiaofeng Li1,2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2709-2726, 2024, DOI:10.32604/cmc.2024.056925 - 18 November 2024

    Abstract The traffic within data centers exhibits bursts and unpredictable patterns. This rapid growth in network traffic has two consequences: it surpasses the inherent capacity of the network’s link bandwidth and creates an imbalanced network load. Consequently, persistent overload situations eventually result in network congestion. The Software Defined Network (SDN) technology is employed in data centers as a network architecture to enhance performance. This paper introduces an adaptive congestion control strategy, named DA-DCTCP, for SDN-based Data Centers. It incorporates Explicit Congestion Notification (ECN) and Round-Trip Time (RTT) to establish congestion awareness and an ECN marking model.… More >

  • Open Access

    ARTICLE

    Adaptive Video Dual Domain Watermarking Scheme Based on PHT Moment and Optimized Spread Transform Dither Modulation

    Yucheng Liang1,2,*, Ke Niu1,2,*, Yingnan Zhang1,2, Yifei Meng1,2, Fangmeng Hu1,2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2457-2492, 2024, DOI:10.32604/cmc.2024.056438 - 18 November 2024

    Abstract To address the challenges of video copyright protection and ensure the perfect recovery of original video, we propose a dual-domain watermarking scheme for digital video, inspired by Robust Reversible Watermarking (RRW) technology used in digital images. Our approach introduces a parameter optimization strategy that incrementally adjusts scheme parameters through attack simulation fitting, allowing for adaptive tuning of experimental parameters. In this scheme, the low-frequency Polar Harmonic Transform (PHT) moment is utilized as the embedding domain for robust watermarking, enhancing stability against simulation attacks while implementing the parameter optimization strategy. Through extensive attack simulations across various… More >

  • Open Access

    ARTICLE

    Adaptive Nonlinear PD Controller of Two-Wheeled Self-Balancing Robot with External Force

    Van-Truong Nguyen1,*, Dai-Nhan Duong1, Dinh-Hieu Phan1, Thanh-Lam Bui1, Xiem HoangVan2, Phan Xuan Tan3

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2337-2356, 2024, DOI:10.32604/cmc.2024.055412 - 18 November 2024

    Abstract This paper proposes an adaptive nonlinear proportional-derivative (ANPD) controller for a two-wheeled self-balancing robot (TWSB) modeled by the Lagrange equation with external forces. The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative (NPD) controller and a genetic algorithm, in which the proportional-derivative (PD) parameters are updated online based on the tracking error and the preset error threshold. In addition, the genetic algorithm is employed to adaptively select initial controller parameters, contributing to system stability and improved control accuracy. The proposed controller is basic in design yet simple to implement. The… More >

  • Open Access

    ARTICLE

    Parameter Optimization of Tuned Mass Damper Inerter via Adaptive Harmony Search

    Yaren Aydın1, Gebrail Bekdaş1,*, Sinan Melih Nigdeli1, Zong Woo Geem2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2471-2499, 2024, DOI:10.32604/cmes.2024.056693 - 31 October 2024

    Abstract Dynamic impacts such as wind and earthquakes cause loss of life and economic damage. To ensure safety against these effects, various measures have been taken from past to present and solutions have been developed using different technologies. Tall buildings are more susceptible to vibrations such as wind and earthquakes. Therefore, vibration control has become an important issue in civil engineering. This study optimizes tuned mass damper inerter (TMDI) using far-fault ground motion records. This study derives the optimum parameters of TMDI using the Adaptive Harmony Search algorithm. Structure displacement and total acceleration against earthquake load More >

  • Open Access

    ARTICLE

    A Two-Layer Optimal Scheduling Strategy for Rural Microgrids Accounting for Flexible Loads

    Guo Zhao1,2, Chi Zhang1,2,*, Qiyuan Ren1,2

    Energy Engineering, Vol.121, No.11, pp. 3355-3379, 2024, DOI:10.32604/ee.2024.053130 - 21 October 2024

    Abstract In the context of China’s “double carbon” goals and rural revitalization strategy, the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids. Considering the operational characteristics of rural microgrids and their impact on users, this paper establishes a two-layer scheduling model incorporating flexible loads. The upper-layer aims to minimize the comprehensive operating cost of the rural microgrid, while the lower-layer aims to minimize the total electricity cost for rural users. An Improved Adaptive Genetic Algorithm (IAGA) is proposed to solve the model. Results show that the two-layer scheduling model with More >

  • Open Access

    ARTICLE

    Research on Defect Detection of Wind Turbine Blades Based on Morphology and Improved Otsu Algorithm Using Infrared Images

    Shuang Kang1, Yinchao He1,2, Wenwen Li1,*, Sen Liu2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 933-949, 2024, DOI:10.32604/cmc.2024.056614 - 15 October 2024

    Abstract To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades (WTB), this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm. First, mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image. The algorithm employs entropy as the objective function to guide the iteration process of image enhancement, selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations, effectively enhancing the detail features of defect… More >

  • Open Access

    ARTICLE

    Adaptive Successive POI Recommendation via Trajectory Sequences Processing and Long Short-Term Preference Learning

    Yali Si1,2, Feng Li1,*, Shan Zhong1,2, Chenghang Huo3, Jing Chen4, Jinglian Liu1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 685-706, 2024, DOI:10.32604/cmc.2024.055141 - 15 October 2024

    Abstract Point-of-interest (POI) recommendations in location-based social networks (LBSNs) have developed rapidly by incorporating feature information and deep learning methods. However, most studies have failed to accurately reflect different users’ preferences, in particular, the short-term preferences of inactive users. To better learn user preferences, in this study, we propose a long-short-term-preference-based adaptive successive POI recommendation (LSTP-ASR) method by combining trajectory sequence processing, long short-term preference learning, and spatiotemporal context. First, the check-in trajectory sequences are adaptively divided into recent and historical sequences according to a dynamic time window. Subsequently, an adaptive filling strategy is used to… More >

  • Open Access

    ARTICLE

    Reversible Data Hiding Algorithm in Encrypted Images Based on Adaptive Median Edge Detection and Ciphertext-Policy Attribute-Based Encryption

    Zongbao Jiang, Minqing Zhang*, Weina Dong, Chao Jiang, Fuqiang Di

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1123-1155, 2024, DOI:10.32604/cmc.2024.055120 - 15 October 2024

    Abstract With the rapid advancement of cloud computing technology, reversible data hiding algorithms in encrypted images (RDH-EI) have developed into an important field of study concentrated on safeguarding privacy in distributed cloud environments. However, existing algorithms often suffer from low embedding capacities and are inadequate for complex data access scenarios. To address these challenges, this paper proposes a novel reversible data hiding algorithm in encrypted images based on adaptive median edge detection (AMED) and ciphertext-policy attribute-based encryption (CP-ABE). This proposed algorithm enhances the conventional median edge detection (MED) by incorporating dynamic variables to improve pixel prediction… More >

  • Open Access

    ARTICLE

    APSO-CNN-SE: An Adaptive Convolutional Neural Network Approach for IoT Intrusion Detection

    Yunfei Ban, Damin Zhang*, Qing He, Qianwen Shen

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 567-601, 2024, DOI:10.32604/cmc.2024.055007 - 15 October 2024

    Abstract The surge in connected devices and massive data aggregation has expanded the scale of the Internet of Things (IoT) networks. The proliferation of unknown attacks and related risks, such as zero-day attacks and Distributed Denial of Service (DDoS) attacks triggered by botnets, have resulted in information leakage and property damage. Therefore, developing an efficient and realistic intrusion detection system (IDS) is critical for ensuring IoT network security. In recent years, traditional machine learning techniques have struggled to learn the complex associations between multidimensional features in network traffic, and the excellent performance of deep learning techniques,… More >

Displaying 1-10 on page 1 of 460. Per Page