Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Efficient Segmentation Approach for Different Medical Image Modalities

    Walid El-Shafai1,2, Amira A. Mahmoud1, El-Sayed M. El-Rabaie1, Taha E. Taha1, Osama F. Zahran1, Adel S. El-Fishawy1, Naglaa F. Soliman3, Amel A. Alhussan4,*, Fathi E. Abd El-Samie1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3119-3135, 2022, DOI:10.32604/cmc.2022.028935 - 16 June 2022

    Abstract This paper presents a study of the segmentation of medical images. The paper provides a solid introduction to image enhancement along with image segmentation fundamentals. In the first step, the morphological operations are employed to ensure image detail protection and noise-immunity. The objective of using morphological operations is to remove the defects in the texture of the image. Secondly, the Fuzzy C-Means (FCM) clustering algorithm is used to modify membership function based only on the spatial neighbors instead of the distance between pixels within local spatial neighbors and cluster centers. The proposed technique is very… More >

  • Open Access

    ARTICLE

    Hybrid Segmentation Approach for Different Medical Image Modalities

    Walid El-Shafai1,2, Amira A. Mahmoud1, El-Sayed M. El-Rabaie1, Taha E. Taha1, Osama F. Zahran1, Adel S. El-Fishawy1, Naglaa F. Soliman3, Amel A. Alhussan4,*, Fathi E. Abd El-Samie1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3455-3472, 2022, DOI:10.32604/cmc.2022.028722 - 16 June 2022

    Abstract The segmentation process requires separating the image region into sub-regions of similar properties. Each sub-region has a group of pixels having the same characteristics, such as texture or intensity. This paper suggests an efficient hybrid segmentation approach for different medical image modalities based on particle swarm optimization (PSO) and improved fast fuzzy C-means clustering (IFFCM) algorithms. An extensive comparative study on different medical images is presented between the proposed approach and other different previous segmentation techniques. The existing medical image segmentation techniques incorporate clustering, thresholding, graph-based, edge-based, active contour, region-based, and watershed algorithms. This paper More >

  • Open Access

    ARTICLE

    Automatic Liver Tumor Segmentation in CT Modalities Using MAT-ACM

    S. Priyadarsini1,*, Carlos Andrés Tavera Romero2, Abolfazl Mehbodniya3, P. Vidya Sagar4, Sudhakar Sengan5

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1057-1068, 2022, DOI:10.32604/csse.2022.024788 - 09 May 2022

    Abstract In the recent days, the segmentation of Liver Tumor (LT) has been demanding and challenging. The process of segmenting the liver and accurately spotting the tumor is demanding due to the diversity of shape, texture, and intensity of the liver image. The intensity similarities of the neighboring organs of the liver create difficulties during liver segmentation. The manual segmentation does not provide an accurate segmentation because the results provided by different medical experts can vary. Also, this manual technique requires a large number of image slices and time for segmentation. To solve these issues, the… More >

  • Open Access

    ARTICLE

    Hybrid Active Contour Mammographic Mass Segmentation and Classification

    K. Yuvaraj*, U. S. Ragupathy

    Computer Systems Science and Engineering, Vol.40, No.3, pp. 823-834, 2022, DOI:10.32604/csse.2022.018837 - 24 September 2021

    Abstract This research implements a novel segmentation of mammographic mass. Three methods are proposed, namely, segmentation of mass based on iterative active contour, automatic region growing, and fully automatic mask selection-based active contour techniques. In the first method, iterative threshold is performed for manual cropped preprocessed image, and active contour is applied thereafter. To overcome manual cropping in the second method, an automatic seed selection followed by region growing is performed. Given that the result is only a few images owing to over segmentation, the third method uses a fully automatic active contour. Results of the… More >

  • Open Access

    ARTICLE

    The Research of Automatic Classification of Ultrasound Thyroid Nodules

    Yanling An1, Shaohai Hu1,*, Shuaiqi Liu2,3, Jie Zhao2,3,*, Yu-Dong Zhang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 203-222, 2021, DOI:10.32604/cmes.2021.015159 - 28 June 2021

    Abstract This paper proposes a computer-aided diagnosis system which can automatically detect thyroid nodules (TNs) and discriminate them as benign or malignant. The system firstly uses variational level set active contour with gradients and phase information to complete automatic extraction of the boundaries of thyroid nodules images. Then according to thyroid ultrasound images and clinical diagnostic criteria, a new feature extraction method based on the fusion of shape, gray and texture is explored. Due to the imbalance of thyroid sample classes, this paper introduces a weight factor to improve support vector machine, offering different classes of More >

  • Open Access

    ARTICLE

    Fully Automatic Segmentation of Gynaecological Abnormality Using a New Viola–Jones Model

    Ihsan Jasim Hussein1, M. A. Burhanuddin2, Mazin Abed Mohammed3,*, Mohamed Elhoseny4, Begonya Garcia-Zapirain5, Marwah Suliman Maashi6, Mashael S. Maashi7

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 3161-3182, 2021, DOI:10.32604/cmc.2021.012691 - 28 December 2020

    Abstract One of the most complex tasks for computer-aided diagnosis (Intelligent decision support system) is the segmentation of lesions. Thus, this study proposes a new fully automated method for the segmentation of ovarian and breast ultrasound images. The main contributions of this research is the development of a novel Viola–James model capable of segmenting the ultrasound images of breast and ovarian cancer cases. In addition, proposed an approach that can efficiently generate region-of-interest (ROI) and new features that can be used in characterizing lesion boundaries. This study uses two databases in training and testing the proposed… More >

  • Open Access

    ARTICLE

    An Efficient Adaptive Network-Based Fuzzy Inference System with Mosquito Host-Seeking For Facial Expression Recognition

    M. Carmel Sobia1, A. Abudhahir2

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 869-881, 2018, DOI:10.31209/2018.100000014

    Abstract In this paper, an efficient facial expression recognition system using ANFIS-MHS (Adaptive Network-based Fuzzy Inference System with Mosquito Host-Seeking) has been proposed. The features were extracted using MLDA (Modified Linear Discriminant Analysis) and then the optimized parameters are computed by using mGSO (modified Glow-worm Swarm Optimization).The proposed system recognizes the facial expressions using ANFIS-MHS. The experimental results demonstrate that the proposed technique is performed better than existing classification schemes like HAKELM (Hybridization of Adaptive Kernel based Extreme Learning Machine), Support Vector Machine (SVM) and Principal Component Analysis (PCA). The proposed approach is implemented in MATLAB. More >

  • Open Access

    ARTICLE

    Semi-automatic Segmentation of Multiple Sclerosis Lesion Based Active Contours Model and Variational Dirichlet Process

    Foued Derraz1, Laurent Peyrodie2, Antonio PINTI3, Abdelmalik Taleb-Ahmed3, Azzeddine Chikh4, Patrick Hautecoeur5

    CMES-Computer Modeling in Engineering & Sciences, Vol.67, No.2, pp. 95-118, 2010, DOI:10.3970/cmes.2010.067.095

    Abstract We propose a new semi-automatic segmentation based Active Contour Model and statistic prior knowledge of Multiple Sclerosis (MS) Lesions in Regions Of Interest (RIO) within brain Magnetic Resonance Images(MRI). Reliable segmentation of MS lesion is important for at least three types of practical applications: pharmaceutical trails, making decision for drug treatment, patient follow-up. Manual segmentation of the MS lesions in brain MRI by well qualified experts is usually preferred. However, manual segmentation is hard to reproduce and can be highly cost and time consuming in the presence of large volume of MRI data. In other… More >

Displaying 1-10 on page 1 of 8. Per Page