Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (33)
  • Open Access

    PROCEEDINGS

    Design of 3D Printable Microlattices for Sound Absorption

    Xinwei Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011083

    Abstract The emergence of 3D printing opens new possibilities for the development of advanced and innovative metamaterials, particularly in the realm of microlattices. Microlattices are characterized as periodic cellular solids with submillimeter-sized features, such as struts, shells, or plates, arranged spatially in a three-dimensional way. Herein, based on four published studies, we provide a perspective on the design, employing analytical and numerical methods, as well as the performance of 3D-printed microlattices for sound absorption.
    The first study focuses on face-centered cubic-based plate and truss structures [1]. Impedance tube measurements reveal that all the microlattices display absorption curves… More >

  • Open Access

    REVIEW

    Parametric Analysis and Design Considerations for Micro Wind Turbines: A Comprehensive Review

    Dattu Ghane*, Vishnu Wakchaure

    Energy Engineering, Vol.121, No.11, pp. 3199-3220, 2024, DOI:10.32604/ee.2024.050952 - 21 October 2024

    Abstract Wind energy provides a sustainable solution to the ever-increasing demand for energy. Micro-wind turbines offer a promising solution for low-wind speed, decentralized power generation in urban and remote areas. Earlier researchers have explored the design, development, and performance analysis of a micro-wind turbine system tailored for small-scale renewable energy generation. Researchers have investigated various aspects such as aerodynamic considerations, structural integrity, efficiency optimization to ensure reliable and cost-effective operation, blade design, generator selection, and control strategies to enhance the overall performance of the system. The objective of this paper is to provide a comprehensive design… More >

  • Open Access

    ARTICLE

    High-Order DG Schemes with Subcell Limiting Strategies for Simulations of Shocks, Vortices and Sound Waves in Materials Science Problems

    Zhenhua Jiang1,*, Xi Deng2,3, Xin Zhang1, Chao Yan1, Feng Xiao4, Jian Yu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2183-2204, 2024, DOI:10.32604/fdmp.2024.053231 - 23 September 2024

    Abstract Shock waves, characterized by abrupt changes in pressure, temperature, and density, play a significant role in various materials science processes involving fluids. These high-energy phenomena are utilized across multiple fields and applications to achieve unique material properties and facilitate advanced manufacturing techniques. Accurate simulations of these phenomena require numerical schemes that can represent shock waves without spurious oscillations and simultaneously capture acoustic waves for a wide range of wavelength scales. This work suggests a high-order discontinuous Galerkin (DG) method with a finite volume (FV) subcell limiting strategies to achieve better subcell resolution and lower numerical More >

  • Open Access

    ARTICLE

    A Subdivision-Based Combined Shape and Topology Optimization in Acoustics

    Chuang Lu1, Leilei Chen2,3, Jinling Luo4, Haibo Chen1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 847-872, 2024, DOI:10.32604/cmes.2023.044446 - 30 December 2023

    Abstract We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces. The existing structural optimization methods mainly contain shape and topology schemes, with the former changing the surface geometric profile of the structure and the latter changing the material distribution topology or hole topology of the structure. In the present acoustic performance optimization, the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure, the artificial density of the sound… More >

  • Open Access

    PROCEEDINGS

    A 1-D Non-Local Metasurface-Based Broadband Acoustic Diffuser

    Zhuoma Wang1, Ruoyan Li2,3, Wenjing Ye2,*, Yijun Liu3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09236

    Abstract An acoustic diffuser refers to a device that spreads sound energy uniformly in all directions. Such a device plays a very important role in architectural acoustics, i.e., concert halls and auditoriums. Many designs such as the wellknown Schroeder diffusers [1] have been proposed and developed throughout the past several decades. However, most of these conventional designs achieve uniform sound diffusion by using different air trenches to create a phase shift profile following a specific sequence such as maximum length sequence or quadratic residue sequence derived from the number theory [1,2]. As such, these diffusers have… More >

  • Open Access

    TUTORIAL

    Loss Factors and their Effect on Resonance Peaks in Mechanical Systems

    Roman Vinokur*

    Sound & Vibration, Vol.57, pp. 1-13, 2023, DOI:10.32604/sv.2023.041784 - 26 July 2023

    Abstract The loss factors and their effects on the magnitude and frequency of resonance peaks in various mechanical systems are reviewed for acoustic, vibration, and vibration fatigue applications. The main trends and relationships were obtained for linear mechanical models with hysteresis damping. The well-known features (complex module of elasticity, total loss factor, etc.) are clarified for practical engineers and students, and new results are presented (in particular, for 2-DOF in-series models with hysteresis friction). The results are of both educational and practical interest and may be applied for NVH analysis and testing, mechanical and aeromechanical design, More >

  • Open Access

    ARTICLE

    Panel Acoustic Contribution Analysis in Automotive Acoustics Using Discontinuous Isogeometric Boundary Element Method

    Yi Sun1,2,*, Chihua Lu1,2, Zhien Liu1,2, Menglei Sun1, Hao Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2307-2330, 2023, DOI:10.32604/cmes.2023.025313 - 23 November 2022

    Abstract In automotive industries, panel acoustic contribution analysis (PACA) is used to investigate the contributions of the body panels to the acoustic pressure at a certain point of interest. Currently, PACA is implemented mostly by either experiment-based methods or traditional numerical methods. However, these schemes are effort-consuming and inefficient in solving engineering problems, thereby restraining the further development of PACA in automotive acoustics. In this work, we propose a PACA scheme using discontinuous isogeometric boundary element method (IGABEM) to build an easily implementable and efficient method to identify the relative acoustic contributions of each automotive body… More >

  • Open Access

    ARTICLE

    A Modified Formulation of Singular Boundary Method for Exterior Acoustics

    Yi Wu, Zhuojia Fu*, Jian Min

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 377-393, 2023, DOI:10.32604/cmes.2022.023205 - 29 September 2022

    Abstract This paper proposes a modified formulation of the singular boundary method (SBM) by introducing the combined Helmholtz integral equation formulation (CHIEF) and the self-regularization technique to exterior acoustics. In the SBM, the concept of the origin intensity factor (OIF) is introduced to avoid the singularities of the fundamental solutions. The SBM belongs to the meshless boundary collocation methods. The additional use of the CHIEF scheme and the self-regularization technique in the SBM guarantees the unique solution of the exterior acoustics accurately and efficiently. Consequently, by using the SBM coupled with the CHIEF scheme and the More >

  • Open Access

    ARTICLE

    Airborne Acoustic Transmission and Terrain Topography at SAINTGITS Amphitheatre: An Analysis of Outdoor Auditory Perception and Comparison of Contour Plots

    Jacob Thottathil Varghese1,2,*, Sajan Thomas1,2,3, Joselin Herbert4, Chacko Preno Koshy1,2, Arjun Venugopal1,2

    Sound & Vibration, Vol.56, No.3, pp. 255-274, 2022, DOI:10.32604/sv.2022.016180 - 10 August 2022

    Abstract The arrangement of natural and physical features on the earth’s surface are a few among the countless items that govern the airborne acoustic transmission at boundary layers. In particular, if the acoustic waves are attributes of live concerts at open-air theatres, without losing the sheen and quality, the audience should certainly receive the unbroken depth of the performance. Hence, at all times, it is advisable to analyse the auditory receptiveness, particularly in all intended recreational spaces. The current pandemic circumstances and the mandated COVID-19 prevention protocols encourage gatherings in naturally ventilated outdoor regions than confined… More >

  • Open Access

    ARTICLE

    Acoustics Performance Research and Analysis of Light Timber Construction Wall Elements Based on Helmholtz Metasurface

    Si Chen1, Yuhao Zhou1, Sarah Mohrmann2, Haiyan Fu1, Yuying Zou1, Zheng Wang1,*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2791-2803, 2022, DOI:10.32604/jrm.2022.021531 - 29 June 2022

    Abstract Based on the efficient sound absorption characteristics of Helmholtz resonance structures in the range of medium and low frequency acoustic waves, this paper investigates an effective solution for light timber construction walls with acoustic problems. This study takes the light timber construction wall structure as the research object. Based on the Helmholtz resonance principle, the structure design of the wall unit, impedance tube experiment and COMSOL MULTIPHYSICS simulation calculation were carried out to obtain the change rule of acoustic performance of the Helmholtz resonance wall unit structure. The research results show that the overall stability… More > Graphic Abstract

    Acoustics Performance Research and Analysis of Light Timber Construction Wall Elements Based on Helmholtz Metasurface

Displaying 1-10 on page 1 of 33. Per Page