Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (174)
  • Open Access

    ARTICLE

    Speech Emotion Recognition Based on the Adaptive Acoustic Enhancement and Refined Attention Mechanism

    Jun Li1, Chunyan Liang1,*, Zhiguo Liu1, Fengpei Ge2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071011 - 12 January 2026

    Abstract To enhance speech emotion recognition capability, this study constructs a speech emotion recognition model integrating the adaptive acoustic mixup (AAM) and improved coordinate and shuffle attention (ICASA) methods. The AAM method optimizes data augmentation by combining a sample selection strategy and dynamic interpolation coefficients, thus enabling information fusion of speech data with different emotions at the acoustic level. The ICASA method enhances feature extraction capability through dynamic fusion of the improved coordinate attention (ICA) and shuffle attention (SA) techniques. The ICA technique reduces computational overhead by employing depth-separable convolution and an h-swish activation function and More >

  • Open Access

    ARTICLE

    Detecting Vehicle Mechanical Defects Using an Ensemble Deep Learning Model with Mel Frequency Cepstral Coefficients from Acoustic Data

    Mudasir Ali1, Muhammad Faheem Mushtaq2, Urooj Akram2, Nagwan Abdel Samee3,*, Mona M. Jamjoom4, Imran Ashraf5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1863-1901, 2025, DOI:10.32604/cmes.2025.070389 - 26 November 2025

    Abstract Differentiating between regular and abnormal noises in machine-generated sounds is a crucial but difficult problem. For accurate audio signal classification, suitable and efficient techniques are needed, particularly machine learning approaches for automated classification. Due to the dynamic and diverse representative characteristics of audio data, the probability of achieving high classification accuracy is relatively low and requires further research efforts. This study proposes an ensemble model based on the LeNet and hierarchical attention mechanism (HAM) models with MFCC features to enhance the models’ capacity to handle bias. Additionally, CNNs, bidirectional LSTM (BiLSTM), CRNN, LSTM, capsule network More >

  • Open Access

    PROCEEDINGS

    Boundary Penalty Method based Acoustic–Structural Coupled Topology Optimization

    Tao Liu1, Yang Liu2, Jianbin Du1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-2, 2025, DOI:10.32604/icces.2025.011595

    Abstract Currently, the application of the Boundary Penalty (BP) method in acoustic-structural coupled multiphysics optimization problems remains unexplored. Within the theoretical framework of BP developed previously, we address acoustic-structural coupled topology optimization problems by proposing a BP-based acoustic-structural coupled topology optimization model. A systematic solution strategy is developed to tackle the challenges encountered during model solving.
    The proposed model employs a mixed u/p formulation for finite element analysis and the adjoint method for sensitivity analysis to minimize the acoustic pressure within a specified region (Fig.1 A). During optimization iterations, issues such as topological discretization and iteration oscillations… More >

  • Open Access

    PROCEEDINGS

    Maximizing Sound Absorption in 3D Printed Lattice Structures

    Xinwei Li*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-2, 2025, DOI:10.32604/icces.2025.010448

    Abstract Advances in 3D printing have unlocked new opportunities for developing lattice structures tailored for enhanced sound absorption. This work explores methods to maximize sound absorption in microlattice designs by introducing heterogeneity, leveraging dual dissipation mechanisms, and reshaping cavity wall geometries. We present a multilayered Helmholtz resonance (MLHR) analytical model to predict and guide the design of broadband sound-absorbing lattices [1]. Through structural optimization, we demonstrate that heterogeneous microlattices with varying pore and cavity morphologies achieve broadband absorption [2–4], with experimentally validated absorption coefficients exceeding 0.75 across a wide frequency range from 1000 to 6300 Hz.
    Beyond… More >

  • Open Access

    PROCEEDINGS

    Transmission Characteristics in Solid-Liquid Phase changing Metamaterials

    Junyi Xiang1,2,3, Yijun Chai1,2,3,*, Xiongwei Yang1,2,3, Yueming Li1,2,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.011738

    Abstract Acoustic metamaterials have garnered significant attention in recent years due to their potential to manipulate sound waves and the ability to dynamically adjust the bandgap of such materials is particularly crucial.
    This work investigates the influence mechanisms of solid-liquid phase change processes on the performance of metamaterials, which is a significant research focus in the field of acoustic metamaterials. The primary objective is to explore the mechanisms governing the controllable shifting of bandgaps through phase change processes. By utilizing solid-liquid phase change materials as scattering bodies, numerical methods were employed to calculate the band structure and… More >

  • Open Access

    PROCEEDINGS

    Continuous CFRP Composites for Multifunctional Acoustic and Mechanical Metamaterials

    Zhenyu Li1, Hongze Li2, Jinshui Yang2, Hong Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.010548

    Abstract The urgent need to achieve "carbon neutrality" drives the development of innovative porous structures that integrate both acoustic and mechanical properties, aimed at reducing energy consumption. However, enhancing these functionalities often results in increased structural weight, which can restrict their application in scenarios where weight is a critical factor. In response to this challenge, we present a groundbreaking structural design that combines carbon fiber reinforced polymer (CFRP) composites with mechanical and acoustic metamaterials for the first time. This novel construction is characterized by its lightweight nature while delivering exceptional mechanical strength and acoustic performance.
    The experimental… More >

  • Open Access

    ARTICLE

    Subdivision-Based Isogeometric BEM with Deep Neural Network Acceleration for Acoustic Uncertainty Quantification under Ground Reflection Effects

    Yingying Guo1, Ziyu Cui2, Jibing Shen1, Pei Li3,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4519-4550, 2025, DOI:10.32604/cmc.2025.071504 - 23 October 2025

    Abstract Accurate simulation of acoustic wave propagation in complex structures is of great importance in engineering design, noise control, and related research areas. Although traditional numerical simulation methods can provide precise results, they often face high computational costs when applied to complex models or problems involving parameter uncertainties, particularly in the presence of multiple coupled parameters or intricate geometries. To address these challenges, this study proposes an efficient algorithm for simulating the acoustic field of structures with adhered sound-absorbing materials while accounting for ground reflection effects. The proposed method integrates Catmull-Clark subdivision surfaces with the boundary… More >

  • Open Access

    ARTICLE

    Acoustic Noise-Based Scroll Compressor Diagnosis during the Manufacturing Process

    Geunil Lee1, Daeil Kwon2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3329-3342, 2025, DOI:10.32604/cmes.2025.069402 - 30 September 2025

    Abstract Nondestructive testing (NDT) methods such as visual inspection and ultrasonic testing are widely applied in manufacturing quality control, but they remain limited in their ability to detect defect characteristics. Visual inspection depends strongly on operator experience, while ultrasonic testing requires physical contact and stable coupling conditions that are difficult to maintain in production lines. These constraints become more pronounced when defect-related information is scarce or when background noise interferes with signal acquisition in manufacturing processes. This study presents a non-contact acoustic method for diagnosing defects in scroll compressors during the manufacturing process. The diagnostic approach… More >

  • Open Access

    PROCEEDINGS

    Research on the Vertical Fracture Propagation Behavior of Deep Offshore Sandstone Reservoirs

    Weishuai Zhang, Fengjiao Wang, Yikun Liu*, Yilin Liu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010789

    Abstract The mechanism of vertical extension in high-volume hydraulic fracturing is of significant importance for the volumetric transformation of low-permeability reservoirs in deep offshore sandstone formations. The complexity of fracture propagation behavior is influenced by the characteristics of discontinuous thin layers in the vertical plane. However, the mechanisms and influencing factors of fracture extension in the vertical direction during high-volume hydraulic fracturing remain unclear. This study integrates true triaxial hydraulic fracturing experiments with acoustic emission (AE) monitoring, employing a nonlinear finite element method to establish a multi-thin interlayer fracturing model based on seepage-stress-damage coupling. It investigates… More >

  • Open Access

    ARTICLE

    An Optimization-Driven Design Scheme of Lightweight Acoustic Metamaterials for Additive Manufacturing

    Ying Zhou1, Jiayang Yuan1, Zhengtao Shu1, Mengli Ye1, Liang Gao1, Qiong Wang2,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 557-580, 2025, DOI:10.32604/cmc.2025.067761 - 29 August 2025

    Abstract Simultaneously, reducing an acoustic metamaterial’s weight and sound pressure level is an important but difficult topic. Considering the law of mass, traditional lightweight acoustic metamaterials make it difficult to control noise efficiently in real-life applications. In this study, a novel optimization-driven design scheme is developed to obtain lightweight acoustic metamaterials with a strong sound insulation capability for additive manufacturing. In the proposed design scheme, a topology optimization method for an acoustic metamaterial in the acoustic-solid interaction system is implemented to obtain an initial cross-sectional topology of the acoustic microstructure during the conceptual design phase. Then, More >

Displaying 1-10 on page 1 of 174. Per Page