Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    The Influence of Acid on the Rock Mechanical Characteristics of Deep Shale in the Wujiaping Formation

    Hao Zhang1, Yan Zhang1,*, Wei Liu2, Ximin Zhang3, Xiang Liu2

    Energy Engineering, Vol.121, No.1, pp. 27-42, 2024, DOI:10.32604/ee.2023.041410 - 27 December 2023

    Abstract The microscopic characteristics and mechanical properties of rocks change after the action of acid on deep shale, which affects the fracturing effect. Accordingly, we designed and conducted indoor experiments related to the changes in macro and microscopic characteristics after the interaction of acid with the shale of Wujiaping Formation, based on which the characteristic law of fracture volume modification after acid fracturing was studied using numerical simulation. The results demonstrate that the pores and fractures are enlarged and the structure is significantly loosened after the acid immersion. And a 15% concentration of hydrochloric acid can… More >

  • Open Access

    PROCEEDINGS

    Investigation of Pore-Scale THMC Acid Fracturing Process Considering Heat Conduction Anisotropy

    Kaituo Jiao1, Dongxu Han2,*, Bo Yu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-5, 2023, DOI:10.32604/icces.2023.09168

    Abstract Acid fracturing is critical to improving the connectivity inside underground reservoirs, which involves a complex thermal-hydro-mechanical-chemical (THMC) coupling process, especially deep underground. Heat conduction anisotropy is one of the intrinsic properties of rock. It determines the heat response distribution inside the rock and alters the temperature evolution on the reactive surface of fractures and pores. In another way, the rock dissolution rate is closely related to the reactive surface temperature. Predictably, heat conduction anisotropy leads to different rock dissolution morphologies from that of the heat conduction isotropy situation, then the cracks distribution and permeability of… More >

Displaying 1-10 on page 1 of 2. Per Page