Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (113)
  • Open Access

    ARTICLE

    Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm

    Zhuo Chen1,*, Ningning Wang2, Wenbo Jin3, Dui Li1

    Energy Engineering, Vol.121, No.4, pp. 1007-1026, 2024, DOI:10.32604/ee.2023.045270

    Abstract A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines. To ensure the safe operation of crude oil pipelines, an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines. Aiming at the shortcomings of the ENN prediction model, which easily falls into the local minimum value and weak generalization ability in the implementation process, an optimized ENN prediction model based on the IRSA is proposed. The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition… More > Graphic Abstract

    Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm

  • Open Access

    ARTICLE

    Improving the Accuracy of Vegetation Index Retrieval for Biomass by Combining Ground-UAV Hyperspectral Data–A New Method for Inner Mongolia Typical Grasslands

    Ruochen Wang1,#, Jianjun Dong2,#, Lishan Jin3, Yuyan Sun3, Taogetao Baoyin2, Xiumei Wang*

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 387-411, 2024, DOI:10.32604/phyton.2024.047573

    Abstract Grassland biomass is an important parameter of grassland ecosystems. The complexity of the grassland canopy vegetation spectrum makes the long-term assessment of grassland growth a challenge. Few studies have explored the original spectral information of typical grasslands in Inner Mongolia and examined the influence of spectral information on aboveground biomass (AGB) estimation. In order to improve the accuracy of vegetation index inversion of grassland AGB, this study combined ground and Unmanned Aerial Vehicle (UAV) remote sensing technology and screened sensitive bands through ground hyperspectral data transformation and correlation analysis. The narrow band vegetation indices were calculated, and ground and airborne… More >

  • Open Access

    ARTICLE

    Optimizing Deep Neural Networks for Face Recognition to Increase Training Speed and Improve Model Accuracy

    Mostafa Diba*, Hossein Khosravi

    Intelligent Automation & Soft Computing, Vol.38, No.3, pp. 315-332, 2023, DOI:10.32604/iasc.2023.046590

    Abstract Convolutional neural networks continually evolve to enhance accuracy in addressing various problems, leading to an increase in computational cost and model size. This paper introduces a novel approach for pruning face recognition models based on convolutional neural networks. The proposed method identifies and removes inefficient filters based on the information volume in feature maps. In each layer, some feature maps lack useful information, and there exists a correlation between certain feature maps. Filters associated with these two types of feature maps impose additional computational costs on the model. By eliminating filters related to these categories of feature maps, the reduction… More >

  • Open Access

    ARTICLE

    Design of a Lightweight Compressed Video Stream-Based Patient Activity Monitoring System

    Sangeeta Yadav1, Preeti Gulia1,*, Nasib Singh Gill1,*, Piyush Kumar Shukla2, Arfat Ahmad Khan3, Sultan Alharby4, Ahmed Alhussen4, Mohd Anul Haq5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1253-1274, 2024, DOI:10.32604/cmc.2023.042869

    Abstract Inpatient falls from beds in hospitals are a common problem. Such falls may result in severe injuries. This problem can be addressed by continuous monitoring of patients using cameras. Recent advancements in deep learning-based video analytics have made this task of fall detection more effective and efficient. Along with fall detection, monitoring of different activities of the patients is also of significant concern to assess the improvement in their health. High computation-intensive models are required to monitor every action of the patient precisely. This requirement limits the applicability of such networks. Hence, to keep the model lightweight, the already designed… More >

  • Open Access

    ARTICLE

    Predicting the International Roughness Index of JPCP and CRCP Rigid Pavement: A Random Forest (RF) Model Hybridized with Modified Beetle Antennae Search (MBAS) for Higher Accuracy

    Zhou Ji1, Mengmeng Zhou2, Qiang Wang2, Jiandong Huang3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1557-1582, 2024, DOI:10.32604/cmes.2023.046025

    Abstract To improve the prediction accuracy of the International Roughness Index (IRI) of Jointed Plain Concrete Pavements (JPCP) and Continuously Reinforced Concrete Pavements (CRCP), a machine learning approach is developed in this study for the modelling, combining an improved Beetle Antennae Search (MBAS) algorithm and Random Forest (RF) model. The 10-fold cross-validation was applied to verify the reliability and accuracy of the model proposed in this study. The importance scores of all input variables on the IRI of JPCP and CRCP were analysed as well. The results by the comparative analysis showed the prediction accuracy of the IRI of the newly… More > Graphic Abstract

    Predicting the International Roughness Index of JPCP and CRCP Rigid Pavement: A Random Forest (RF) Model Hybridized with Modified Beetle Antennae Search (MBAS) for Higher Accuracy

  • Open Access

    ARTICLE

    Toward Improved Accuracy in Quasi-Static Elastography Using Deep Learning

    Yue Mei1,2,3, Jianwei Deng1,2, Dongmei Zhao1,2, Changjiang Xiao1,2, Tianhang Wang4, Li Dong5, Xuefeng Zhu1,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 911-935, 2024, DOI:10.32604/cmes.2023.043810

    Abstract Elastography is a non-invasive medical imaging technique to map the spatial variation of elastic properties of soft tissues. The quality of reconstruction results in elastography is highly sensitive to the noise induced by imaging measurements and processing. To address this issue, we propose a deep learning (DL) model based on conditional Generative Adversarial Networks (cGANs) to improve the quality of nonhomogeneous shear modulus reconstruction. To train this model, we generated a synthetic displacement field with finite element simulation under known nonhomogeneous shear modulus distribution. Both the simulated and experimental displacement fields are used to validate the proposed method. The reconstructed… More >

  • Open Access

    ARTICLE

    Optimization Algorithms of PERT/CPM Network Diagrams in Linear Diophantine Fuzzy Environment

    Mani Parimala1, Karthikeyan Prakash1, Ashraf Al-Quran2,*, Muhammad Riaz3, Saeid Jafari4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1095-1118, 2024, DOI:10.32604/cmes.2023.031193

    Abstract The idea of linear Diophantine fuzzy set (LDFS) theory with its control parameters is a strong model for machine learning and optimization under uncertainty. The activity times in the critical path method (CPM) representation procedures approach are initially static, but in the Project Evaluation and Review Technique (PERT) approach, they are probabilistic. This study proposes a novel way of project review and assessment methodology for a project network in a linear Diophantine fuzzy (LDF) environment. The LDF expected task time, LDF variance, LDF critical path, and LDF total expected time for determining the project network are all computed using LDF… More > Graphic Abstract

    Optimization Algorithms of PERT/CPM Network Diagrams in Linear Diophantine Fuzzy Environment

  • Open Access

    ARTICLE

    Deep Convolutional Neural Networks for South Indian Mango Leaf Disease Detection and Classification

    Shaik Thaseentaj, S. Sudhakar Ilango*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3593-3618, 2023, DOI:10.32604/cmc.2023.042496

    Abstract The South Indian mango industry is confronting severe threats due to various leaf diseases, which significantly impact the yield and quality of the crop. The management and prevention of these diseases depend mainly on their early identification and accurate classification. The central objective of this research is to propose and examine the application of Deep Convolutional Neural Networks (CNNs) as a potential solution for the precise detection and categorization of diseases impacting the leaves of South Indian mango trees. Our study collected a rich dataset of leaf images representing different disease classes, including Anthracnose, Powdery Mildew, and Leaf Blight. To… More >

  • Open Access

    ARTICLE

    VGWO: Variant Grey Wolf Optimizer with High Accuracy and Low Time Complexity

    Junqiang Jiang1,2, Zhifang Sun1, Xiong Jiang1, Shengjie Jin1, Yinli Jiang3, Bo Fan1,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1617-1644, 2023, DOI:10.32604/cmc.2023.041973

    Abstract The grey wolf optimizer (GWO) is a swarm-based intelligence optimization algorithm by simulating the steps of searching, encircling, and attacking prey in the process of wolf hunting. Along with its advantages of simple principle and few parameters setting, GWO bears drawbacks such as low solution accuracy and slow convergence speed. A few recent advanced GWOs are proposed to try to overcome these disadvantages. However, they are either difficult to apply to large-scale problems due to high time complexity or easily lead to early convergence. To solve the abovementioned issues, a high-accuracy variable grey wolf optimizer (VGWO) with low time complexity… More >

  • Open Access

    ARTICLE

    Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks

    Lu Wei, Zhong Ma*, Chaojie Yang

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 981-1000, 2024, DOI:10.32604/cmes.2023.027085

    Abstract The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing. Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices. In order to reduce the complexity and overhead of deploying neural networks on Integer-only hardware, most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network. However, although symmetric quantization has the advantage of easier implementation, it is sub-optimal for cases where the range could be skewed and not symmetric. This often comes at the cost of lower accuracy. This… More > Graphic Abstract

    Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks

Displaying 1-10 on page 1 of 113. Per Page