Hongle Guo1,2, Yingchi Mao1,2,*, Xiaoming He1,2, Benteng Zhang1,2, Tianfu Pang1,2, Ping Ping1,2
CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 383-403, 2024, DOI:10.32604/cmes.2023.031466
- 30 December 2023
Abstract Data sharing and privacy protection are made possible by federated learning, which allows for continuous model parameter sharing between several clients and a central server. Multiple reliable and high-quality clients must participate in practical applications for the federated learning global model to be accurate, but because the clients are independent, the central server cannot fully control their behavior. The central server has no way of knowing the correctness of the model parameters provided by each client in this round, so clients may purposefully or unwittingly submit anomalous data, leading to abnormal behavior, such as becoming… More >