Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    PROCEEDINGS

    Over-Deterministic Method and Its Application in Fracture Mechanics

    Cheng Hou1, Xiaochao Jin2, Xueling Fan2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012325

    Abstract The over-deterministic method (ODM) is dedicated to calculate a small set of unknown coefficients from a large system of equations, by making use of a large number of data points. A displacement over-deterministic method (DODM) developed by Ayatollahi et al. [1] has been employed by for calculating the stress intensity factors (SIFs) as well as the coefficients of the higher-order terms in the Williams’ series expansions for cracked bodies. The ODM provides a great idea to easily obtain fracture parameters, combine with finite element method (FEM).
    In our work, a stress over-deterministic method (SODM) has been… More >

  • Open Access

    ARTICLE

    Fabrication of Crack-Free Flattened Bamboo and Its Macro-/Micro-Morphological and Mechanical Properties

    Zhichao Lou1,2, Tiancheng Yuan1, Qiuyi Wang1, Xinwu Wu1, Shouheng Hu1, Xiaomeng Hao1, Xianmiao Liu3,*, Yanjun Li1,*

    Journal of Renewable Materials, Vol.9, No.5, pp. 959-977, 2021, DOI:10.32604/jrm.2021.014285 - 20 February 2021

    Abstract This work aimed to help the bamboo industry develop methodology for producing imperfection-free bamboo boards that can serve either decorative or structural benefit to consumers seeking to engage with the bioeconomy. Specifi- cally, softened and slotted bamboo tubes were handled by a roller device with nails to render crack-free flattened bamboo board. Softening temperature and time were optimized herein according to findings regarding chemical composition and board mechanical properties. The optimal softening parameters for saturated steam heat treatment is proved to be 160°C for 8 minutes. The flattened bamboo board possesses an increased bending strength… More >

  • Open Access

    ARTICLE

    Study of the Effect of Graphite Filler on the Vulcanizing Behavior and Properties of Nitrile Rubber and NBRPVC Blends

    D. MURALI MANOHAR1,*, B.C. CHAKRABORTY2, S. SHAMSHATH BEGUM3

    Journal of Polymer Materials, Vol.37, No.1-2, pp. 91-107, 2020, DOI:10.32381/JPM.2020.37.1-2.7

    Abstract In search of improved materials for efficient shock and vibration mounts for machineries, graphite loaded NBR and NBR/PVC blend were made and investigated. The scorch time was seen to be reduced and vulcanization rate was enhanced due to graphite inclusion. Scanning electron microscopy images have shown homogenous dispersion of graphite powder. NBRgraphite showed a gradual increase in the hardness, tensile strength, Young’s modulus, and tear values with increasing graphite loading. In the case of NBR/PVC-graphite composition, a drop in the tensile strength and increase in the Young’ modulus and tear strength was observed. Various mathematical More >

  • Open Access

    ARTICLE

    Influence of functionalization on the structural and mechanical properties of graphene

    L.S. Melro1,2, L.R. Jensen1

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 109-127, 2017, DOI:10.3970/cmc.2017.053.111

    Abstract Molecular dynamics simulations were applied in order to calculate the Young’s modulus of graphene functionalized with carboxyl, hydroxyl, carbonyl, hydrogen, methyl, and ethyl groups. The influence of the grafting density with percentages of 3, 5, 7, and 10% and the type of distribution as a single cluster or several small clusters were also studied. The results show that the elastic modulus is dependent on the type of functional groups. The increasing coverage density also evidenced a decrease of the Young’s modulus, and the organization of functional groups as single cluster showed a lesser impact than More >

  • Open Access

    ARTICLE

    Estimation of the Mechanical Property of CNT Ropes Using Atomistic-Continuum Mechanics and the Equivalent Methods

    C.J. Huang1, T.Y. Hung1, K.N. Chiang2

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 99-133, 2013, DOI:10.3970/cmc.2013.036.099

    Abstract The development in the field of nanotechnology has prompted numerous researchers to develop various simulation methods for determining the material properties of nanoscale structures. However, these methods are restricted by the speed limitation of the central processing unit (CPU), which cannot estimate larger-scale nanoscale models within an acceptable time. Thus, decreasing the CPU processing time and retaining the estimation accuracy of physical properties of nanoscale structures have become critical issues. Accordingly, this study aims to decrease the CPU processing time and complexity of large nanoscale models by utilizing, atomistic-continuum mechanics (ACM) to build an equivalent… More >

Displaying 1-10 on page 1 of 5. Per Page