Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    YOLOv10-HQGNN: A Hybrid Quantum Graph Learning Framework for Real-Time Faulty Insulator Detection

    Nghia Dinh1, Vinh Truong Hoang1,*, Viet-Tuan Le1, Kiet Tran-Trung1, Ha Duong Thi Hong1, Bay Nguyen Van1, Hau Nguyen Trung1, Thien Ho Huong1, Kittikhun Meethongjan2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069587 - 12 January 2026

    Abstract Ensuring the reliability of power transmission networks depends heavily on the early detection of faults in key components such as insulators, which serve both mechanical and electrical functions. Even a single defective insulator can lead to equipment breakdown, costly service interruptions, and increased maintenance demands. While unmanned aerial vehicles (UAVs) enable rapid and cost-effective collection of high-resolution imagery, accurate defect identification remains challenging due to cluttered backgrounds, variable lighting, and the diverse appearance of faults. To address these issues, we introduce a real-time inspection framework that integrates an enhanced YOLOv10 detector with a Hybrid Quantum-Enhanced More >

  • Open Access

    ARTICLE

    CMS-YOLO: An Automated Multi-Category Brain Tumor Detection Algorithm Based on Improved YOLOv10s

    Li Li, Xiao Wang*, Ran Ding, Linlin Luo, Qinmu Wu, Zhiqin He

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1287-1309, 2025, DOI:10.32604/cmc.2025.065670 - 29 August 2025

    Abstract Brain tumors are neoplastic diseases caused by the proliferation of abnormal cells in brain tissues, and their appearance may lead to a series of complex symptoms. However, current methods struggle to capture deeper brain tumor image feature information due to the variations in brain tumor morphology, size, and complex background, resulting in low detection accuracy, high rate of misdiagnosis and underdiagnosis, and challenges in meeting clinical needs. Therefore, this paper proposes the CMS-YOLO network model for multi-category brain tumor detection, which is based on the You Only Look Once version 10 (YOLOv10s) algorithm. This model… More >

  • Open Access

    ARTICLE

    Nighttime Intelligent UAV-Based Vehicle Detection and Classification Using YOLOv10 and Swin Transformer

    Abdulwahab Alazeb1, Muhammad Hanzla2, Naif Al Mudawi1,*, Mohammed Alshehri1, Haifa F. Alhasson3, Dina Abdulaziz AlHammadi4, Ahmad Jalal2,5

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4677-4697, 2025, DOI:10.32604/cmc.2025.065899 - 30 July 2025

    Abstract Unmanned Aerial Vehicles (UAVs) have become indispensable for intelligent traffic monitoring, particularly in low-light conditions, where traditional surveillance systems struggle. This study presents a novel deep learning-based framework for nighttime aerial vehicle detection and classification that addresses critical challenges of poor illumination, noise, and occlusions. Our pipeline integrates MSRCR enhancement with OPTICS segmentation to overcome low-light challenges, while YOLOv10 enables accurate vehicle localization. The framework employs GLOH and Dense-SIFT for discriminative feature extraction, optimized using the Whale Optimization Algorithm to enhance classification performance. A Swin Transformer-based classifier provides the final categorization, leveraging hierarchical attention mechanisms More >

  • Open Access

    ARTICLE

    Enhancing Fire Detection Performance Based on Fine-Tuned YOLOv10

    Trong Thua Huynh*, Hoang Thanh Nguyen, Du Thang Phu

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2281-2298, 2024, DOI:10.32604/cmc.2024.057954 - 18 November 2024

    Abstract In recent years, early detection and warning of fires have posed a significant challenge to environmental protection and human safety. Deep learning models such as Faster R-CNN (Faster Region based Convolutional Neural Network), YOLO (You Only Look Once), and their variants have demonstrated superiority in quickly detecting objects from images and videos, creating new opportunities to enhance automatic and efficient fire detection. The YOLO model, especially newer versions like YOLOv10, stands out for its fast processing capability, making it suitable for low-latency applications. However, when applied to real-world datasets, the accuracy of fire prediction is… More >

Displaying 1-10 on page 1 of 4. Per Page