Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Efficient and Cost-Effective Vehicle Detection in Foggy Weather for Edge/Fog-Enabled Traffic Surveillance and Collision Avoidance Systems

    Naeem Raza1, Muhammad Asif Habib1, Mudassar Ahmad1, Qaisar Abbas2,*, Mutlaq B. Aldajani2, Muhammad Ahsan Latif3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 911-931, 2024, DOI:10.32604/cmc.2024.055049 - 15 October 2024

    Abstract Vision-based vehicle detection in adverse weather conditions such as fog, haze, and mist is a challenging research area in the fields of autonomous vehicles, collision avoidance, and Internet of Things (IoT)-enabled edge/fog computing traffic surveillance and monitoring systems. Efficient and cost-effective vehicle detection at high accuracy and speed in foggy weather is essential to avoiding road traffic collisions in real-time. To evaluate vision-based vehicle detection performance in foggy weather conditions, state-of-the-art Vehicle Detection in Adverse Weather Nature (DAWN) and Foggy Driving (FD) datasets are self-annotated using the YOLO LABEL tool and customized to four vehicle… More >

  • Open Access

    ARTICLE

    Fruits and Vegetables Freshness Categorization Using Deep Learning

    Labiba Gillani Fahad1, Syed Fahad Tahir2,*, Usama Rasheed1, Hafsa Saqib1, Mehdi Hassan2, Hani Alquhayz3

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5083-5098, 2022, DOI:10.32604/cmc.2022.023357 - 14 January 2022

    Abstract The nutritional value of perishable food items, such as fruits and vegetables, depends on their freshness levels. The existing approaches solve a binary class problem by classifying a known fruit\vegetable class into fresh or rotten only. We propose an automated fruits and vegetables categorization approach that first recognizes the class of object in an image and then categorizes that fruit or vegetable into one of the three categories: pure-fresh, medium-fresh, and rotten. We gathered a dataset comprising of 60K images of 11 fruits and vegetables, each is further divided into three categories of freshness, using… More >

  • Open Access

    ARTICLE

    Weapons Detection for Security and Video Surveillance Using CNN and YOLO-V5s

    Abdul Hanan Ashraf1, Muhammad Imran1, Abdulrahman M. Qahtani2,*, Abdulmajeed Alsufyani2, Omar Almutiry3, Awais Mahmood3, Muhammad Attique4, Mohamed Habib5,6

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2761-2775, 2022, DOI:10.32604/cmc.2022.018785 - 27 September 2021

    Abstract In recent years, the number of Gun-related incidents has crossed over 250,000 per year and over 85% of the existing 1 billion firearms are in civilian hands, manual monitoring has not proven effective in detecting firearms. which is why an automated weapon detection system is needed. Various automated convolutional neural networks (CNN) weapon detection systems have been proposed in the past to generate good results. However, These techniques have high computation overhead and are slow to provide real-time detection which is essential for the weapon detection system. These models have a high rate of false… More >

Displaying 1-10 on page 1 of 3. Per Page