Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (47)
  • Open Access

    ARTICLE

    An Improved Practical Byzantine Fault-Tolerant Algorithm Based on XGBoost Grouping for Consortium Chains

    Xiaowei Wang, Haiyang Zhang, Jiasheng Zhang, Yingkai Ge, Kexin Cui, Zifu Peng, Zhengyi Li, Lihua Wang*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1295-1311, 2025, DOI:10.32604/cmc.2024.058559 - 03 January 2025

    Abstract In response to the challenges presented by the unreliable identity of the master node, high communication overhead, and limited network support size within the Practical Byzantine Fault-Tolerant (PBFT) algorithm for consortium chains, we propose an improved PBFT algorithm based on XGBoost grouping called XG-PBFT in this paper. XG-PBFT constructs a dataset by training important parameters that affect node performance, which are used as classification indexes for nodes. The XGBoost algorithm then is employed to train the dataset, and nodes joining the system will be grouped according to the trained grouping model. Among them, the nodes… More >

  • Open Access

    ARTICLE

    IDSSCNN-XgBoost: Improved Dual-Stream Shallow Convolutional Neural Network Based on Extreme Gradient Boosting Algorithm for Micro Expression Recognition

    Adnan Ahmad, Zhao Li*, Irfan Tariq, Zhengran He

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 729-749, 2025, DOI:10.32604/cmc.2024.055768 - 03 January 2025

    Abstract Micro-expressions (ME) recognition is a complex task that requires advanced techniques to extract informative features from facial expressions. Numerous deep neural networks (DNNs) with convolutional structures have been proposed. However, unlike DNNs, shallow convolutional neural networks often outperform deeper models in mitigating overfitting, particularly with small datasets. Still, many of these methods rely on a single feature for recognition, resulting in an insufficient ability to extract highly effective features. To address this limitation, in this paper, an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm (IDSSCNN-XgBoost) is introduced for ME… More >

  • Open Access

    ARTICLE

    XGBoost Based Multiclass NLOS Channels Identification in UWB Indoor Positioning System

    Ammar Fahem Majeed1,2,*, Rashidah Arsat1, Muhammad Ariff Baharudin1, Nurul Mu’azzah Abdul Latiff1, Abbas Albaidhani3

    Computer Systems Science and Engineering, Vol.49, pp. 159-183, 2025, DOI:10.32604/csse.2024.058741 - 03 January 2025

    Abstract Accurate non-line of sight (NLOS) identification technique in ultra-wideband (UWB) location-based services is critical for applications like drone communication and autonomous navigation. However, current methods using binary classification (LOS/NLOS) oversimplify real-world complexities, with limited generalisation and adaptability to varying indoor environments, thereby reducing the accuracy of positioning. This study proposes an extreme gradient boosting (XGBoost) model to identify multi-class NLOS conditions. We optimise the model using grid search and genetic algorithms. Initially, the grid search approach is used to identify the most favourable values for integer hyperparameters. In order to achieve an optimised model configuration,… More >

  • Open Access

    ARTICLE

    Stability Prediction in Smart Grid Using PSO Optimized XGBoost Algorithm with Dynamic Inertia Weight Updation

    Adel Binbusayyis*, Mohemmed Sha

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 909-931, 2025, DOI:10.32604/cmes.2024.058202 - 17 December 2024

    Abstract Prediction of stability in SG (Smart Grid) is essential in maintaining consistency and reliability of power supply in grid infrastructure. Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid. It also possesses a better impact on averting overloading and permitting effective energy storage. Even though many traditional techniques have predicted the consumption rate for preserving stability, enhancement is required in prediction measures with minimized loss. To overcome the complications in existing studies, this paper intends to predict stability from the smart grid… More >

  • Open Access

    ARTICLE

    Cyberbullying Sexism Harassment Identification by Metaheurustics-Tuned eXtreme Gradient Boosting

    Milos Dobrojevic1,4, Luka Jovanovic1, Lepa Babic3, Miroslav Cajic5, Tamara Zivkovic6, Miodrag Zivkovic2, Suresh Muthusamy7, Milos Antonijevic2, Nebojsa Bacanin2,4,8,9,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4997-5027, 2024, DOI:10.32604/cmc.2024.054459 - 12 September 2024

    Abstract Cyberbullying is a form of harassment or bullying that takes place online or through digital devices like smartphones, computers, or tablets. It can occur through various channels, such as social media, text messages, online forums, or gaming platforms. Cyberbullying involves using technology to intentionally harm, harass, or intimidate others and may take different forms, including exclusion, doxing, impersonation, harassment, and cyberstalking. Unfortunately, due to the rapid growth of malicious internet users, this social phenomenon is becoming more frequent, and there is a huge need to address this issue. Therefore, the main goal of the research… More >

  • Open Access

    ARTICLE

    Automatic Rule Discovery for Data Transformation Using Fusion of Diversified Feature Formats

    G. Sunil Santhosh Kumar1,2,*, M. Rudra Kumar3

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 695-713, 2024, DOI:10.32604/cmc.2024.050143 - 18 July 2024

    Abstract This article presents an innovative approach to automatic rule discovery for data transformation tasks leveraging XGBoost, a machine learning algorithm renowned for its efficiency and performance. The framework proposed herein utilizes the fusion of diversified feature formats, specifically, metadata, textual, and pattern features. The goal is to enhance the system’s ability to discern and generalize transformation rules from source to destination formats in varied contexts. Firstly, the article delves into the methodology for extracting these distinct features from raw data and the pre-processing steps undertaken to prepare the data for the model. Subsequent sections expound… More >

  • Open Access

    ARTICLE

    Developing a Model for Parkinson’s Disease Detection Using Machine Learning Algorithms

    Naif Al Mudawi*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4945-4962, 2024, DOI:10.32604/cmc.2024.048967 - 20 June 2024

    Abstract Parkinson’s disease (PD) is a chronic neurological condition that progresses over time. People start to have trouble speaking, writing, walking, or performing other basic skills as dopamine-generating neurons in some brain regions are injured or die. The patient’s symptoms become more severe due to the worsening of their signs over time. In this study, we applied state-of-the-art machine learning algorithms to diagnose Parkinson’s disease and identify related risk factors. The research worked on the publicly available dataset on PD, and the dataset consists of a set of significant characteristics of PD. We aim to apply… More >

  • Open Access

    ARTICLE

    Research on the Icing Diagnosis of Wind Turbine Blades Based on FS–XGBoost–EWMA

    Jicai Guo1,2, Xiaowen Song1,2,*, Chang Liu1,2, Yanfeng Zhang1,2, Shijie Guo1,2, Jianxin Wu1,2, Chang Cai3, Qing’an Li3,*

    Energy Engineering, Vol.121, No.7, pp. 1739-1758, 2024, DOI:10.32604/ee.2024.048854 - 11 June 2024

    Abstract In winter, wind turbines are susceptible to blade icing, which results in a series of energy losses and safe operation problems. Therefore, blade icing detection has become a top priority. Conventional methods primarily rely on sensor monitoring, which is expensive and has limited applications. Data-driven blade icing detection methods have become feasible with the development of artificial intelligence. However, the data-driven method is plagued by limited training samples and icing samples; therefore, this paper proposes an icing warning strategy based on the combination of feature selection (FS), eXtreme Gradient Boosting (XGBoost) algorithm, and exponentially weighted… More >

  • Open Access

    ARTICLE

    Migratable Power System Transient Stability Assessment Method Based on Improved XGBoost

    Ying Qu1, Jinhao Wang1, Xueting Cheng1, Jie Hao1, Weiru Wang1, Zhewen Niu2, Yuxiang Wu2,*

    Energy Engineering, Vol.121, No.7, pp. 1847-1863, 2024, DOI:10.32604/ee.2024.048300 - 11 June 2024

    Abstract The data-driven transient stability assessment (TSA) of power systems can predict online real-time prediction by learning the temporal features before and after faults. However, the accuracy of the assessment is limited by the quality of the data and has weak transferability. Based on this, this paper proposes a method for TSA of power systems based on an improved extreme gradient boosting (XGBoost) model. Firstly, the gradient detection method is employed to remove noise interference while maintaining the original time series trend. On this basis, a focal loss function is introduced to guide the training of… More >

  • Open Access

    ARTICLE

    Image Fusion Using Wavelet Transformation and XGboost Algorithm

    Shahid Naseem1, Tariq Mahmood2,3, Amjad Rehman Khan2, Umer Farooq1, Samra Nawazish4, Faten S. Alamri5,*, Tanzila Saba2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 801-817, 2024, DOI:10.32604/cmc.2024.047623 - 25 April 2024

    Abstract Recently, there have been several uses for digital image processing. Image fusion has become a prominent application in the domain of imaging processing. To create one final image that proves more informative and helpful compared to the original input images, image fusion merges two or more initial images of the same item. Image fusion aims to produce, enhance, and transform significant elements of the source images into combined images for the sake of human visual perception. Image fusion is commonly employed for feature extraction in smart robots, clinical imaging, audiovisual camera integration, manufacturing process monitoring,… More >

Displaying 1-10 on page 1 of 47. Per Page