Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    Research on Defect Detection of Wind Turbine Blades Based on Morphology and Improved Otsu Algorithm Using Infrared Images

    Shuang Kang1, Yinchao He1,2, Wenwen Li1,*, Sen Liu2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 933-949, 2024, DOI:10.32604/cmc.2024.056614 - 15 October 2024

    Abstract To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades (WTB), this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm. First, mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image. The algorithm employs entropy as the objective function to guide the iteration process of image enhancement, selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations, effectively enhancing the detail features of defect… More >

  • Open Access

    ARTICLE

    Surface Defect Detection and Evaluation Method of Large Wind Turbine Blades Based on an Improved Deeplabv3+ Deep Learning Model

    Wanrun Li1,2,3,*, Wenhai Zhao1, Tongtong Wang1, Yongfeng Du1,2,3

    Structural Durability & Health Monitoring, Vol.18, No.5, pp. 553-575, 2024, DOI:10.32604/sdhm.2024.050751 - 19 July 2024

    Abstract The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage, impacting the aerodynamic performance of the blades. To address the challenge of detecting and quantifying surface defects on wind turbine blades, a blade surface defect detection and quantification method based on an improved Deeplabv3+ deep learning model is proposed. Firstly, an improved method for wind turbine blade surface defect detection, utilizing Mobilenetv2 as the backbone feature extraction network, is proposed based on an original Deeplabv3+ deep learning model to address the issue of limited robustness. Secondly, through integrating the concept of… More > Graphic Abstract

    Surface Defect Detection and Evaluation Method of Large Wind Turbine Blades Based on an Improved Deeplabv3+ Deep Learning Model

  • Open Access

    RETRACTION

    Retraction: Optimized Design of Bio-inspired Wind Turbine Blades

    Yuanjun Dai1,4,*, Dong Wang1, Xiongfei Liu2, Weimin Wu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1665-1665, 2024, DOI:10.32604/fdmp.2024.053146 - 23 July 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Optimized Design of Bio-Inspired Wind Turbine Blades

    Yuanjun Dai1,4,*, Dong Wang1, Xiongfei Liu2, Weimin Wu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1647-1664, 2024, DOI:10.32604/fdmp.2024.046158 - 23 July 2024

    Abstract To enhance the aerodynamic performance of wind turbine blades, this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle. Based on the blade element theory, a non-uniform extraction method of blade elements is employed for the optimization design of the considered wind turbine blades. Moreover, Computational Fluid Dynamics (CFD) is used to determine the aerodynamic performances of the eagle airfoil and a NACA2412 airfoil, thereby demonstrating the superior aerodynamic performance of the former. Finally, a mathematical model for optimizing the design of wind turbine blades is introduced and More >

  • Open Access

    ARTICLE

    Research on the Icing Diagnosis of Wind Turbine Blades Based on FS–XGBoost–EWMA

    Jicai Guo1,2, Xiaowen Song1,2,*, Chang Liu1,2, Yanfeng Zhang1,2, Shijie Guo1,2, Jianxin Wu1,2, Chang Cai3, Qing’an Li3,*

    Energy Engineering, Vol.121, No.7, pp. 1739-1758, 2024, DOI:10.32604/ee.2024.048854 - 11 June 2024

    Abstract In winter, wind turbines are susceptible to blade icing, which results in a series of energy losses and safe operation problems. Therefore, blade icing detection has become a top priority. Conventional methods primarily rely on sensor monitoring, which is expensive and has limited applications. Data-driven blade icing detection methods have become feasible with the development of artificial intelligence. However, the data-driven method is plagued by limited training samples and icing samples; therefore, this paper proposes an icing warning strategy based on the combination of feature selection (FS), eXtreme Gradient Boosting (XGBoost) algorithm, and exponentially weighted… More >

  • Open Access

    ARTICLE

    Computational Verification of Low-Frequency Broadband Noise from Wind Turbine Blades Using Semi-Empirical Methods

    Vasishta Bhargava Nukala*, Chinmaya Prasad Padhy

    Sound & Vibration, Vol.58, pp. 133-150, 2024, DOI:10.32604/sv.2024.047762 - 19 March 2024

    Abstract A significant aerodynamic noise from wind turbines arises when the rotating blades interact with turbulent flows. Though the trailing edge of the blade is an important source of noise at high frequencies, the present work deals with the influence of turbulence distortion on leading edge noise from wind turbine blades which becomes significant in low-frequency regions. Four quasi-empirical methods are studied to verify the accuracy of turbulent inflow noise predicted at low frequencies for a 2 MW horizontal axis wind turbine. Results have shown that all methods exhibited a downward linear trend in noise spectra More >

  • Open Access

    ARTICLE

    Nonlinear Flap-Wise Vibration Characteristics of Wind Turbine Blades Based on Multi-Scale Analysis Method

    Qifa Lang, Yuqiao Zheng*, Tiancai Cui, Chenglong Shi, Heyu Zhang

    Energy Engineering, Vol.121, No.2, pp. 483-498, 2024, DOI:10.32604/ee.2023.042437 - 25 January 2024

    Abstract This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle. We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory (NREL), to research the effects of the nonlinear flap-wise vibration characteristics. The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam, and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first. Then, the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the… More >

  • Open Access

    ARTICLE

    Influence of Trailing-Edge Wear on the Vibrational Behavior of Wind Turbine Blades

    Yuanjun Dai1,2,*, Xin Wei1, Baohua Li1, Cong Wang1, Kunju Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 337-348, 2024, DOI:10.32604/fdmp.2023.042434 - 14 December 2023

    Abstract To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades, unworn blades and trailing-edge worn blades have been assessed through relevant modal tests. According to these experiments, the natural frequencies of trailing-edge worn blades −1, −2, and −3 increase the most in the second to fourth order, the fifth order increases in the middle, and the first order increases the least. The damping ratio data indicate that, in general, the first five-order damping ratios of trailing-edge worn blades −1 and trailing-edge worn blades −2 are reduced, and the first five-order More >

  • Open Access

    ARTICLE

    Research on the Follow-Up Control Strategy of Biaxial Fatigue Test of Wind Turbine Blade Based on Electromagnetic Excitation

    Wenzhe Guo1, Leian Zhang1,*, Chao Lv2, Weisheng Liu3, Jiabin Tian2

    Energy Engineering, Vol.120, No.10, pp. 2307-2323, 2023, DOI:10.32604/ee.2023.030029 - 28 September 2023

    Abstract Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift, a biaxial fatigue testing machine for electromagnetic excitation is designed, and the following strategy of the actual load and the target load is studied. A Fast Transversal Recursive Least Squares algorithm based on fuzzy logic (Fuzzy FTRLS) is proposed to develop a fatigue loading following dynamic strategy, which adjusts the forgetting factor in the algorithm through fuzzy logic to overcome the contradiction More >

  • Open Access

    ARTICLE

    Extraction of Strain Characteristic Signals from Wind Turbine Blades Based on EEMD-WT

    Jin Wang1, Zhen Liu1,*, Ying Wang1, Caifeng Wen2,3, Jianwen Wang2,3

    Energy Engineering, Vol.120, No.5, pp. 1149-1162, 2023, DOI:10.32604/ee.2023.025209 - 20 February 2023

    Abstract Analyzing the strain signal of wind turbine blade is the key to studying the load of wind turbine blade, so as to ensure the safe and stable operation of wind turbine in natural environment. The strain signal of the wind turbine blade under continuous crosswind state has typical non-stationary and unsteady characteristics. The strain signal contains a lot of noise, which makes the analysis error. Therefore, it is very important to denoise and extract features of measured signals before signal analysis. In this paper, the joint algorithm of ensemble empirical mode decomposition (EEMD) and wavelet… More >

Displaying 1-10 on page 1 of 19. Per Page