Deema Alsekait1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4
CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2395-2436, 2024, DOI:10.32604/cmc.2024.055469
- 18 November 2024
Abstract The widespread adoption of Internet of Things (IoT) devices has resulted in notable progress in different fields, improving operational effectiveness while also raising concerns about privacy due to their vulnerability to virus attacks. Further, the study suggests using an advanced approach that utilizes machine learning, specifically the Wide Residual Network (WRN), to identify hidden malware in IoT systems. The research intends to improve privacy protection by accurately identifying malicious software that undermines the security of IoT devices, using the MalMemAnalysis dataset. Moreover, thorough experimentation provides evidence for the effectiveness of the WRN-based strategy, resulting in… More >