Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Predicting Users’ Latent Suicidal Risk in Social Media: An Ensemble Model Based on Social Network Relationships

    Xiuyang Meng1,2, Chunling Wang1,2,*, Jingran Yang1,2, Mairui Li1,2, Yue Zhang1,2, Luo Wang1,2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4259-4281, 2024, DOI:10.32604/cmc.2024.050325 - 20 June 2024

    Abstract Suicide has become a critical concern, necessitating the development of effective preventative strategies. Social media platforms offer a valuable resource for identifying signs of suicidal ideation. Despite progress in detecting suicidal ideation on social media, accurately identifying individuals who express suicidal thoughts less openly or infrequently poses a significant challenge. To tackle this, we have developed a dataset focused on Chinese suicide narratives from Weibo’s Tree Hole feature and introduced an ensemble model named Text Convolutional Neural Network based on Social Network relationships (TCNN-SN). This model enhances predictive performance by leveraging social network relationship features More >

Displaying 1-10 on page 1 of 1. Per Page