Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    A Double-Compensation-Based Federated Learning Scheme for Data Privacy Protection in a Social IoT Scenario

    Junqi Guo1,2, Qingyun Xiong1,*, Minghui Yang1, Ziyun Zhao1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 827-848, 2023, DOI:10.32604/cmc.2023.036450 - 08 June 2023

    Abstract Nowadays, smart wearable devices are used widely in the Social Internet of Things (IoT), which record human physiological data in real time. To protect the data privacy of smart devices, researchers pay more attention to federated learning. Although the data leakage problem is somewhat solved, a new challenge has emerged. Asynchronous federated learning shortens the convergence time, while it has time delay and data heterogeneity problems. Both of the two problems harm the accuracy. To overcome these issues, we propose an asynchronous federated learning scheme based on double compensation to solve the problem of time… More >

  • Open Access

    ARTICLE

    Feature Fusion-Based Deep Learning Network to Recognize Table Tennis Actions

    Chih-Ta Yen1,*, Tz-Yun Chen2, Un-Hung Chen3, Guo-Chang Wang3, Zong-Xian Chen3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 83-99, 2023, DOI:10.32604/cmc.2023.032739 - 22 September 2022

    Abstract A system for classifying four basic table tennis strokes using wearable devices and deep learning networks is proposed in this study. The wearable device consisted of a six-axis sensor, Raspberry Pi 3, and a power bank. Multiple kernel sizes were used in convolutional neural network (CNN) to evaluate their performance for extracting features. Moreover, a multiscale CNN with two kernel sizes was used to perform feature fusion at different scales in a concatenated manner. The CNN achieved recognition of the four table tennis strokes. Experimental data were obtained from 20 research participants who wore sensors More >

  • Open Access

    ARTICLE

    Real Time Monitoring of Muscle Fatigue with IoT and Wearable Devices

    Anita Gehlot1, Rajesh Singh1, Sweety Siwach2, Shaik Vaseem Akram1, Khalid Alsubhi3, Aman Singh4,*, Irene Delgado Noya4,5, Sushabhan Choudhury2

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 999-1015, 2022, DOI:10.32604/cmc.2022.023861 - 24 February 2022

    Abstract Wearable monitoring devices are in demand in recent times for monitoring daily activities including exercise. Moreover, it is widely utilizing for preventing injuries of athletes during a practice session and in few cases, it leads to muscle fatigue. At present, emerging technology like the internet of things (IoT) and sensors is empowering to monitor and visualize the physical data from any remote location through internet connectivity. In this study, an IoT-enabled wearable device is proposing for monitoring and identifying the muscle fatigue condition using a surface electromyogram (sEMG) sensor. Normally, the EMG signal is utilized… More >

  • Open Access

    ARTICLE

    An Overview of the Miniaturization and Endurance for Wearable Devices

    Zhoulei Cao1, Qijun Wen1, Xiaoliang Wang1,*, Qing Yang1, Frank Jiang2

    Journal on Internet of Things, Vol.3, No.1, pp. 11-17, 2021, DOI:10.32604/jiot.2021.010404 - 16 March 2021

    Abstract The miniaturization and endurance of wearable devices have been the research direction for a long time. With the development of nanotechnology and the emergence of microelectronics products, people have explored many new strategies that may be applied to wearable devices. In this overview, we will summarize the recent research of wearable devices in these two directions, and summarize some available related technologies. More >

  • Open Access

    ARTICLE

    Developing a New Security Framework for Bluetooth Low Energy Devices

    Qiaoyang Zhang1, Zhiyao Liang1,*, Zhiping Cai2

    CMC-Computers, Materials & Continua, Vol.59, No.2, pp. 457-471, 2019, DOI:10.32604/cmc.2019.03758

    Abstract Wearable devices are becoming more popular in our daily life. They are usually used to monitor health status, track fitness data, or even do medical tests, etc. Since the wearable devices can obtain a lot of personal data, their security issues are very important. Motivated by the consideration that the current pairing mechanisms of Bluetooth Low Energy (BLE) are commonly impractical or insecure for many BLE based wearable devices nowadays, we design and implement a security framework in order to protect the communication between these devices. The security framework is a supplement to the Bluetooth… More >

Displaying 1-10 on page 1 of 5. Per Page