Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Sustainable Particleboards Based on Sugarcane Bagasse and Bonded with a Waste-Grown Black Soldier Fly Larvae Commercial Flour-Based Adhesive: Rheological, Physical, and Mechanical Properties

    Francisco Daniel García1,2, Solange Nicole Aigner1,2, Natalia Raffaeli3, Antonio José Barotto3, Eleana Spavento3, Mariano Martín Escobar1,4, Marcela Angela Mansilla1,4, Alejandro Bacigalupe1,4,*

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0181 - 23 January 2026

    Abstract This study explores the use of black soldier fly larvae protein as a bio-based adhesive to produce particleboards from sugarcane bagasse. A comprehensive evaluation was conducted, including rheological characterization of the adhesive and physical–mechanical testing of the panels according to European standards. The black soldier fly larvae-based adhesive exhibited gel-like viscoelastic behavior, rapid partial structural recovery after shear, and favorable application properties. Particleboards manufactured with this adhesive and sugarcane bagasse achieved promising mechanical performance, with modulus of rupture and modulus of elasticity values of 30.2 and 3500 MPa, respectively. Internal bond strength exceeded 0.4 MPa,… More > Graphic Abstract

    Sustainable Particleboards Based on Sugarcane Bagasse and Bonded with a Waste-Grown Black Soldier Fly Larvae Commercial Flour-Based Adhesive: Rheological, Physical, and Mechanical Properties

  • Open Access

    ARTICLE

    Saccharification of Paper Sludge and Fiber Dust Wastes from the Tissue Paper Industry by Maximyze® Enzymes

    Enas Hassan1, Wafaa Abou-Elseoud1,2, Samar El-Mekkawi3, Mohammad Hassan1,2,*

    Journal of Renewable Materials, Vol.13, No.6, pp. 1169-1187, 2025, DOI:10.32604/jrm.2025.02024-0030 - 23 June 2025

    Abstract Saccharification of lignocellulosic wastes is the bottleneck of different bio-based chemical industries. Using enzymes for saccharification of lignocellulosic materials has several advantages over using chemicals. In the current work, the application of the Maximyze® enzyme system, which is industrially used in papermaking, was investigated in the saccharification of paper sludge and fiber dust wastes from the tissue paper industry. For optimizing the saccharification process, the effects of the consistency %, enzyme loading, and incubation time were studied and optimized using the Response Surface Methodology. The effect of these factors on the weight loss of paper sludge… More > Graphic Abstract

    Saccharification of Paper Sludge and Fiber Dust Wastes from the Tissue Paper Industry by Maximyze<sup>®</sup> Enzymes

  • Open Access

    ARTICLE

    Eco-Friendly Materials Composed of Cellulose Fibers from Agave Bagasse with Silver Nanoparticles and Shrimp Chitosan

    Belkis Sulbarán-Rangel1,*, Jorge Armando Caldera Siller1, Salvador García Enríquez2, José Anzaldo-Hernandez2, Jenny Arratia-Quijada3, Marianelly Esquivel Alfaro4

    Journal of Renewable Materials, Vol.13, No.5, pp. 849-863, 2025, DOI:10.32604/jrm.2025.02024-0061 - 20 May 2025

    Abstract In this research, the antibacterial properties of a composite material prepared from agave bagasse cellulose fibers doped with silver nanoparticles and chitosan were studied. The development of composite materials with antibacterial properties and environmentally friendly based on cellulose fibers from agave bagasse with silver nanoparticles prepared by green synthesis and chitosan from shrimp waste enhances the value of these agro-industrial wastes and offers the opportunity for them to have biomedical applications since these raw materials have been poorly reported for this application. The antibacterial properties of chitosan and silver nanoparticles are already known. However, the… More > Graphic Abstract

    Eco-Friendly Materials Composed of Cellulose Fibers from Agave Bagasse with Silver Nanoparticles and Shrimp Chitosan

  • Open Access

    ARTICLE

    Phosphoric Acid Pretreatment and Saccharification of Paper Sludge as a Renewable Material for Cellulosic Fibers

    Samar El-Mekkawi1, Wafaa Abou-Elseoud2, Shaimaa Fadel2, Enas Hassan2, Mohammad Hassan2,*

    Journal of Renewable Materials, Vol.12, No.9, pp. 1573-1591, 2024, DOI:10.32604/jrm.2024.053589 - 25 September 2024

    Abstract Recycling of paper sludge waste is crucial for establishing a sustainable green industry. This waste contains valuable sugars that can be converted into important chemicals such as ethanol, poly hydroxybutyrate, and lactic acid. However, the main challenge in obtaining sugars in high yield from paper sludge is the high crystallinity of cellulose, which hinders hydrolysis. To address this, pretreatment using phosphoric acid was optimized using response surface methodology to facilitate cellulose hydrolysis with minimal energy and chemicals. The created prediction model using the response surface method considered factors such as acid concentration (ranging from 60%… More > Graphic Abstract

    Phosphoric Acid Pretreatment and Saccharification of Paper Sludge as a Renewable Material for Cellulosic Fibers

  • Open Access

    ARTICLE

    Differential metabolome landscape of Kadsura coccinea fruit tissues and potential valorization of the peel and seed tissues

    JIANFEI GAO1, KANGNING XIONG2,*, WEIJIE LI1, WEI ZHOU3

    BIOCELL, Vol.46, No.1, pp. 285-296, 2022, DOI:10.32604/biocell.2021.016253 - 29 September 2021

    Abstract Kadsura coccinea (Lem.) is a woody wine plant with a peculiar fruit enriched in important health-promoting compounds. The non-editable part of the fruit, i.e., the seed and peel, represents more than 60% of the fruit and is considered a biowaste. This significantly restricts the development of the K. coccinea fruit industry. Clarifying the metabolic components of the different fruit parts can help to improve the utilization rate and valorization of K. coccinea. Herein, we evaluated K. coccinea fruit peel, pulp, and seed using widely-targeted metabolomics and quantified a set of 736 bioactive compounds from 11 major metabolite classes. The… More >

  • Open Access

    ARTICLE

    Metabolic Profiling in Banana Pseudo-Stem Reveals a Diverse Set of Bioactive Compounds with Potential Nutritional and Industrial Applications

    Guiming Deng1,2,3, Ou Sheng1,2,3, Fangcheng Bi1,2,3, Chunyu Li1,2,3, Tongxin Dou1,2,3, Tao Dong1,2,3, Qiaosong Yang1,2,3, Huijun Gao1,2,3, Jing Liu4, Xiaohong Zhong4, Miao Peng4, Ganjun Yi1,2,3, Weidi He1,2,3, Chunhua Hu1,2,3,*

    Phyton-International Journal of Experimental Botany, Vol.89, No.4, pp. 1101-1130, 2020, DOI:10.32604/phyton.2020.010970 - 09 November 2020

    Abstract Banana (Musa spp.) is an ancient and popular fruit plant with highly nutritious fruit. The pseudo-stem of banana represents on average 75% of the total dry mass but its valorization as a nutritional and industrial by-product is limited. Recent advances in metabolomics have paved the way to understand and evaluate the presence of diverse sets of metabolites in different plant parts. This study aimed at exploring the diversity of primary and secondary metabolites in the banana pseudo-stem. Hereby, we identified and quantified 373 metabolites from a diverse range of classes including, alkaloids, flavonoids, lipids, phenolic acids,… More >

  • Open Access

    ARTICLE

    Valorization of Citrus Waste: Use in Catalysis for the Oxidation of Sulfides

    María Belén Colombo Migliorero, Valeria Palermo*, Patricia Graciela Vázquez, Gustavo Pablo Romanelli

    Journal of Renewable Materials, Vol.5, No.3-4, pp. 167-173, 2017, DOI:10.7569/JRM.2017.634108

    Abstract The utilization and valorization of industrial waste is an effective strategy for environmental protection. Since the juice industry generates a huge amount of citrus waste, we studied the application of thermally treated orange peel in catalysis. On the other hand, Keggin heteropolyacids are excellent oxidant catalysts used as a replacement for conventional oxidants; however, their solubility in polar solvents and the low specific area limit their use as heterogeneous catalysts. The utilization of treated orange peel as heteropolyacid support for the selective oxidation of sulfides is presented here. Firstly, orange peel was thermally treated, and More >

  • Open Access

    ARTICLE

    Renewable Additives that Improve Water Resistance of Cellulose Composite Materials

    Heather L. Buckley1*, Caitlin H. Touchberry2, Jonathan P. McKinley2, Zachary S. Mathe1, Hurik Muradyan1, Hannah Ling2, Raj P. Fadadu1, Martin J. Mulvihill1, Susan E. Amrose2

    Journal of Renewable Materials, Vol.5, No.1, pp. 1-13, 2017, DOI:10.7569/JRM.2016.634109

    Abstract Waste cardboard is an underutilized resource that can be redirected for the creation of safer and higher quality building materials for low-income housing in the developing world, as well as to produce better materials for indoor environments in developed-world contexts. Using a renewable biobased binder and benign additives, we have improved the water resistance of a cardboard-based composite material, overcoming one of the major barriers to scaling and adoption of this class of materials. Resistance to water uptake was significantly increased with several additives and was increased over 900-fold in the best case. Strength and More >

Displaying 1-10 on page 1 of 8. Per Page