Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    SOH Estimation of Lithium Batteries Based on ICA and WOA-RBF Algorithm

    Qi Wang1,2,3, Yandong Gu1,*, Tao Zhu1, Lantian Ge1, Yibo Huang1

    Energy Engineering, Vol.121, No.11, pp. 3221-3239, 2024, DOI:10.32604/ee.2024.053758 - 21 October 2024

    Abstract Accurately estimating the State of Health (SOH) of batteries is of great significance for the stable operation and safety of lithium batteries. This article proposes a method based on the combination of Capacity Incremental Curve Analysis (ICA) and Whale Optimization Algorithm-Radial Basis Function (WOA-RBF) neural network algorithm to address the issues of low accuracy and slow convergence speed in estimating State of Health of batteries. Firstly, preprocess the battery data to obtain the real battery SOH curve and Capacity-Voltage (Q-V) curve, convert the Q-V curve into an IC curve and denoise it, analyze the parameters… More >

  • Open Access

    ARTICLE

    Short-Term Wind Power Prediction Based on WVMD and Spatio-Temporal Dual-Stream Network

    Yingnan Zhao*, Yuyuan Ruan, Zhen Peng

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 549-566, 2024, DOI:10.32604/cmc.2024.056240 - 15 October 2024

    Abstract As the penetration ratio of wind power in active distribution networks continues to increase, the system exhibits some characteristics such as randomness and volatility. Fast and accurate short-term wind power prediction is essential for algorithms like scheduling and optimization control. Based on the spatio-temporal features of Numerical Weather Prediction (NWP) data, it proposes the WVMD_DSN (Whale Optimization Algorithm, Variational Mode Decomposition, Dual Stream Network) model. The model first applies Pearson correlation coefficient (PCC) to choose some NWP features with strong correlation to wind power to form the feature set. Then, it decomposes the feature set More >

  • Open Access

    ARTICLE

    Optimized Phishing Detection with Recurrent Neural Network and Whale Optimizer Algorithm

    Brij Bhooshan Gupta1,2,3,*, Akshat Gaurav4, Razaz Waheeb Attar5, Varsha Arya6,7, Ahmed Alhomoud8, Kwok Tai Chui9

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4895-4916, 2024, DOI:10.32604/cmc.2024.050815 - 12 September 2024

    Abstract Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape, necessitating the development of more sophisticated detection methods. Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishing Uniform Resource Locator (URLs). Addressing these challenge, we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network (RNN) with the hyperparameter optimization prowess of the Whale Optimization Algorithm (WOA). Our model capitalizes on an extensive Kaggle dataset, featuring over 11,000 URLs, each More >

  • Open Access

    ARTICLE

    A Microseismic Signal Denoising Algorithm Combining VMD and Wavelet Threshold Denoising Optimized by BWOA

    Dijun Rao1,2,3,4, Min Huang1,2,3,5, Xiuzhi Shi4, Zhi Yu6,*, Zhengxiang He7

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 187-217, 2024, DOI:10.32604/cmes.2024.051402 - 20 August 2024

    Abstract The denoising of microseismic signals is a prerequisite for subsequent analysis and research. In this research, a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm (BWOA) optimized Variational Mode Decomposition (VMD) joint Wavelet Threshold Denoising (WTD) algorithm (BVW) is proposed. The BVW algorithm integrates VMD and WTD, both of which are optimized by BWOA. Specifically, this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited Intrinsic Mode Functions (BLIMFs). Subsequently, these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold… More >

  • Open Access

    ARTICLE

    Research on the MPPT of Photovoltaic Power Generation Based on Improved WOA and P&O under Partial Shading Conditions

    Jian Zhong, Lei Zhang*, Ling Qin

    Energy Engineering, Vol.121, No.4, pp. 951-971, 2024, DOI:10.32604/ee.2023.041433 - 26 March 2024

    Abstract Partial shading conditions (PSCs) caused by uneven illumination become one of the most common problems in photovoltaic (PV) systems, which can make the PV power-voltage (P-V) characteristics curve show multi-peaks. Traditional maximum power point tracking (MPPT) methods have shortcomings in tracking to the global maximum power point (GMPP), resulting in a dramatic decrease in output power. In order to solve the above problems, intelligent algorithms are used in MPPT. However, the existing intelligent algorithms have some disadvantages, such as slow convergence speed and large search oscillation. Therefore, an improved whale algorithm (IWOA) combined with the More >

  • Open Access

    ARTICLE

    MCWOA Scheduler: Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing

    Chirag Chandrashekar1, Pradeep Krishnadoss1,*, Vijayakumar Kedalu Poornachary1, Balasundaram Ananthakrishnan1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2593-2616, 2024, DOI:10.32604/cmc.2024.046304 - 27 February 2024

    Abstract Cloud computing provides a diverse and adaptable resource pool over the internet, allowing users to tap into various resources as needed. It has been seen as a robust solution to relevant challenges. A significant delay can hamper the performance of IoT-enabled cloud platforms. However, efficient task scheduling can lower the cloud infrastructure’s energy consumption, thus maximizing the service provider’s revenue by decreasing user job processing times. The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm (MCWOA), combines elements of the Chimp Optimization Algorithm (COA) and the Whale Optimization Algorithm (WOA). To enhance MCWOA’s… More >

  • Open Access

    ARTICLE

    Whale Optimization Algorithm-Based Deep Learning Model for Driver Identification in Intelligent Transport Systems

    Yuzhou Li*, Chuanxia Sun, Yinglei Hu

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3497-3515, 2023, DOI:10.32604/cmc.2023.035878 - 31 March 2023

    Abstract Driver identification in intelligent transport systems has immense demand, considering the safety and convenience of traveling in a vehicle. The rapid growth of driver assistance systems (DAS) and driver identification system propels the need for understanding the root causes of automobile accidents. Also, in the case of insurance, it is necessary to track the number of drivers who commonly drive a car in terms of insurance pricing. It is observed that drivers with frequent records of paying “fines” are compelled to pay higher insurance payments than drivers without any penalty records. Thus driver identification act… More >

  • Open Access

    ARTICLE

    A Processor Performance Prediction Method Based on Interpretable Hierarchical Belief Rule Base and Sensitivity Analysis

    Chen Wei-wei1, He Wei1,2,*, Zhu Hai-long1, Zhou Guo-hui1, Mu Quan-qi1, Han Peng1

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6119-6143, 2023, DOI:10.32604/cmc.2023.035743 - 28 December 2022

    Abstract The prediction of processor performance has important reference significance for future processors. Both the accuracy and rationality of the prediction results are required. The hierarchical belief rule base (HBRB) can initially provide a solution to low prediction accuracy. However, the interpretability of the model and the traceability of the results still warrant further investigation. Therefore, a processor performance prediction method based on interpretable hierarchical belief rule base (HBRB-I) and global sensitivity analysis (GSA) is proposed. The method can yield more reliable prediction results. Evidence reasoning (ER) is firstly used to evaluate the historical data of More >

  • Open Access

    ARTICLE

    Software Defect Prediction Based Ensemble Approach

    J. Harikiran1,*, B. Sai Chandana1, B. Srinivasarao1, B. Raviteja2, Tatireddy Subba Reddy3

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2313-2331, 2023, DOI:10.32604/csse.2023.029689 - 21 December 2022

    Abstract Software systems have grown significantly and in complexity. As a result of these qualities, preventing software faults is extremely difficult. Software defect prediction (SDP) can assist developers in finding potential bugs and reducing maintenance costs. When it comes to lowering software costs and assuring software quality, SDP plays a critical role in software development. As a result, automatically forecasting the number of errors in software modules is important, and it may assist developers in allocating limited resources more efficiently. Several methods for detecting and addressing such flaws at a low cost have been offered. These… More >

  • Open Access

    ARTICLE

    WOA-DNN for Intelligent Intrusion Detection and Classification in MANET Services

    C. Edwin Singh1,*, S. Maria Celestin Vigila2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1737-1751, 2023, DOI:10.32604/iasc.2023.028022 - 19 July 2022

    Abstract Mobile ad-hoc networks (MANET) are garnering a lot of attention because of their potential to provide low-cost solutions to real-world communications. MANETs are more vulnerable to security threats. Changes in nodes, bandwidth limits, and centralized control and management are some of the characteristics. IDS (Intrusion Detection System) are the aid for detection, determination, and identification of illegal system activity such as use, copying, modification, and destruction of data. To address the identified issues, academics have begun to concentrate on building IDS-based machine learning algorithms. Deep learning is a type of machine learning that can produce… More >

Displaying 1-10 on page 1 of 19. Per Page