Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (61)
  • Open Access

    RETRACTION

    Retraction: Emodin Inhibits Colon Cancer Cell Invasion and Migration by Suppressing Epithelial-Mesenchymal Transition via the Wnt/β-Catenin Pathway

    Oncology Research Editorial Office

    Oncology Research, Vol.32, No.8, pp. 1375-1375, 2024, DOI:10.32604/or.2024.055032

    Abstract This article has no abstract. More >

  • Open Access

    CORRECTION

    Correction: MicroRNA-329-3p inhibits the Wnt/β-catenin pathway and proliferation of osteosarcoma cells by targeting transcription factor 7-like 1

    HUI SUN, MASANORI KAWANO*, TATSUYA IWASAKI, ICHIRO ITONAGA, YUTA KUBOTA, HIROSHI TSUMURA, KAZUHIRO TANAKA

    Oncology Research, Vol.32, No.8, pp. 1369-1370, 2024, DOI:10.32604/or.2024.052652

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Knockdown of Collagen Triple Helix Repeat Containing-1 Inhibits the Proliferation and Epithelial-to-Mesenchymal Transition in Renal Cell Carcinoma Cells

    Xue-fei Jin, Hai Li, Shi Zong, Hong-yan Li

    Oncology Research, Vol.24, No.6, pp. 477-485, 2016, DOI:10.3727/096504016X14685034103716

    Abstract Collagen triple helix repeat containing-1 (CTHRC1), a secreted glycoprotein, is frequently upregulated in human cancers. However, the functional role of CTHRC1 in renal cell carcinoma (RCC) remains unclear. Thus, the aim of this study was to explore the role of CTHRC1 in RCC. Our results demonstrated that CTHRC1 was upregulated in RCC tissues and cell lines. Knockdown of CTHRC1 significantly inhibits the proliferation in RCCs. Furthermore, knockdown of CTHRC1 significantly inhibited the epithelial-to-mesenchymal transition (EMT) process in RCCs, as well as suppressed RCC cell migration and invasion. Mechanistically, knockdown of CTHRC1 inhibited the expression of More >

  • Open Access

    ARTICLE

    Knockdown of CUL4B Suppresses the Proliferation and Invasion in Non-Small Cell Lung Cancer Cells

    Xuguang Wang*, Zhe Chen

    Oncology Research, Vol.24, No.4, pp. 271-277, 2016, DOI:10.3727/096504016X14666990347473

    Abstract Cullin 4B (CUL4B), a scaffold protein that assembles CRL4B ubiquitin ligase complexes, was found to be overexpressed in many types of tumors. However, the expression pattern and role of CUL4B in non-small cell lung cancer (NSCLC) remain largely unknown. Therefore, in the present study, we investigated the role of CUL4B in NSCLC, and the underlying mechanism was also explored. Our results showed that CUL4B was highly expressed in NSCLC cell lines. Silencing CUL4B obviously inhibited proliferation and migration/invasion of NSCLC cells, and it also suppressed the epithelial–mesenchymal transition (EMT) progress in NSCLC cells. Furthermore, knockdown More >

  • Open Access

    ARTICLE

    TIPE2 Inhibits Hypoxia-Induced Wnt/β-Catenin Pathway Activation and EMT in Glioma Cells

    Zhi-jun Liu*1, Hong-lin Liu*1, Hai-cun Zhou, Gui-cong Wang*

    Oncology Research, Vol.24, No.4, pp. 255-261, 2016, DOI:10.3727/096504016X14666990347356

    Abstract Hypoxia-induced epithelial-to-mesenchymal transition (EMT) could facilitate tumor progression. TIPE2, the tumor necrosis factor-α (TNF-α)-induced protein 8-like 2 (also known as TNFAIP8L2), is a member of the TNF-α-induced protein 8 (TNFAIP8, TIPE) family and has been involved in the development and progression of several tumors. However, the effects of TIPE2 on the EMT process in glioma cells and the underlying mechanisms of these effects have not been previously reported. In our study, we assessed the roles of TIPE2 in the EMT process in glioma cells in response to hypoxia. Our results indicated that TIPE2 expression was More >

  • Open Access

    ARTICLE

    Knockdown of Upregulated Gene 11 (URG11) Inhibits Proliferation, Invasion, and b-Catenin Expression in Non-Small Cell Lung Cancer Cells

    Zhe-liang Liu*, Jiao Wu, Lin-xian Wang, Jin-feng Yang, Gao-ming Xiao*, Hui-ping Sun, Yue-jun Chen*

    Oncology Research, Vol.24, No.3, pp. 197-204, 2016, DOI:10.3727/096504016X14648701447850

    Abstract Upregulated gene 11 (URG11), a new gene upregulated by hepatitis B virus X protein, was found to be involved in the development and progression of several tumors. However, the role of URG11 in human non-small cell lung cancer (NSCLC) has not yet been determined. Therefore, the aim of the present study was to explore the role of URG11 in human NSCLC. Our results found that URG11 was highly expressed in human NSCLC tissues compared with matched normal lung tissues, and higher levels were found in NSCLC cell lines in comparison to the normal lung cell More >

  • Open Access

    ARTICLE

    miR-34b Targets HSF1 to Suppress Cell Survival in Acute Myeloid Leukemia

    Gangcan Li, Yanping Song, Yunjie Zhang, Hao Wang, Jia Xie

    Oncology Research, Vol.24, No.2, pp. 109-116, 2016, DOI:10.3727/096504016X14611963142254

    Abstract Acute myeloid leukemia (AML) is the most lethal hematological malignancy, and the occurrence of chemoresistance prevents the achievement of complete remission following the standard therapy. MicroRNAs have been extensively investigated as critical regulators of hematopoiesis and leukemogenesis, and they represent a promising strategy for AML therapy. In this study, we identified miR-34b as a novel regulator in myeloid proliferation and apoptosis of leukemic cells. We found that miR-34b was developmentally upregulated in plasma and myeloid cells of healthy subjects, while it was significantly reduced in blood samples of patients with AML and AML cell lines.… More >

  • Open Access

    ARTICLE

    YEATS Domain Containing 4 Promotes Gastric Cancer Cell Proliferation and Mediates Tumor Progression via Activating the Wnt/β-Catenin Signaling Pathway

    Sheqing Ji*, Youxiang Zhang, Binhai Yang

    Oncology Research, Vol.25, No.9, pp. 1633-1641, 2017, DOI:10.3727/096504017X14878528144150

    Abstract Increased expression of YEATS domain containing 4 (YEATS4) has been reported to have a correlation with progression in many types of cancer. However, the mechanism by which it promotes the development of gastric cancer (GC) is rarely reported. This study aimed to investigate the effect of YEATS4 on cell proliferation and tumor progression. The mRNA and protein expressions of YEATS4 in GC tissues and cell lines were analyzed. BGC-823 cells then overexpressed or silenced YEATS4 by transfection of different plasmids. The regulatory effect of YEATS on cell viability, colony formation, cell apoptosis, and tumor growth… More >

  • Open Access

    ARTICLE

    LINC00052 Promotes Gastric Cancer Cell Proliferation and Metastasis via Activating the Wnt/β-Catenin Signaling Pathway

    Yuqiang Shan1, Rongchao Ying1, Zhong Jia, Wencheng Kong, Yi Wu, Sixin Zheng, Huicheng Jin

    Oncology Research, Vol.25, No.9, pp. 1589-1599, 2017, DOI:10.3727/096504017X14897896412027

    Abstract Gastric cancer (GC) is one of the most common malignant tumors of the digestive system. The etiology of GC is complex, and much more attention should be paid to genetic factors. In this study, we explored the role and function of LINC00052 in GC. We applied qRT-PCR and Northern blot to detect the expression of LINC00052 and found it was highly expressed during GC. We also investigated the effects of LINC00052 on tumor prognosis and progression and found that LINC00052 indicated poor prognosis and tumor progression. By performing MTT, colony formation, and Transwell assays, we… More >

  • Open Access

    ARTICLE

    MicroRNA-342-3p Inhibits the Proliferation, Migration, and Invasion of Osteosarcoma Cells by Targeting Astrocyte-Elevated Gene-1 (AEG-1)

    Shaokun Zhang*, Lidi Liu*, Zhenshan Lv*, Qiao Li*, Weiquan Gong*, Hong Wu

    Oncology Research, Vol.25, No.9, pp. 1505-1515, 2017, DOI:10.3727/096504017X14886485417426

    Abstract Recent studies suggest that microRNAs (miRNAs) are critical regulators in many types of cancer, including osteosarcoma. miR-342-3p has emerged as an important cancer-related miRNA in several types of cancers. However, the functional significance of miR-342-3p in osteosarcoma is unknown. The aims of this study were to investigate whether miR-342-3p is dysregulated in osteosarcoma and to explore the biological function of miR-342-3p in regulating cellular processes of osteosarcoma cells. We found that miR-342-3p expression was significantly decreased in osteosarcoma tissues and cell lines. Overexpression of miR-342-3p inhibits the proliferation, migration, and invasion of osteosarcoma cells. In… More >

Displaying 1-10 on page 1 of 61. Per Page