Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    GraphCWGAN-GP: A Novel Data Augmenting Approach for Imbalanced Encrypted Traffic Classification

    Jiangtao Zhai1,*, Peng Lin1, Yongfu Cui1, Lilong Xu1, Ming Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 2069-2092, 2023, DOI:10.32604/cmes.2023.023764 - 06 February 2023

    Abstract Encrypted traffic classification has become a hot issue in network security research. The class imbalance problem of traffic samples often causes the deterioration of Machine Learning based classifier performance. Although the Generative Adversarial Network (GAN) method can generate new samples by learning the feature distribution of the original samples, it is confronted with the problems of unstable training and mode collapse. To this end, a novel data augmenting approach called GraphCWGAN-GP is proposed in this paper. The traffic data is first converted into grayscale images as the input for the proposed model. Then, the minority… More >

  • Open Access

    ARTICLE

    Generating Time-Series Data Using Generative Adversarial Networks for Mobility Demand Prediction

    Subhajit Chatterjee1, Yung-Cheol Byun2,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5507-5525, 2023, DOI:10.32604/cmc.2023.032843 - 28 December 2022

    Abstract The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features. Electric kickboards are gradually growing in popularity in tourist and education-centric localities. In the upcoming arrival of electric kickboard vehicles, deploying a customer rental service is essential. Due to its free-floating nature, the shared electric kickboard is a common and practical means of transportation. Relocation plans for shared electric kickboards are required to increase the quality of service, and forecasting demand for their use in a specific region is crucial. Predicting demand accurately with… More >

  • Open Access

    ARTICLE

    Generating Synthetic Data to Reduce Prediction Error of Energy Consumption

    Debapriya Hazra, Wafa Shafqat, Yung-Cheol Byun*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3151-3167, 2022, DOI:10.32604/cmc.2022.020143 - 27 September 2021

    Abstract Renewable and nonrenewable energy sources are widely incorporated for solar and wind energy that produces electricity without increasing carbon dioxide emissions. Energy industries worldwide are trying hard to predict future energy consumption that could eliminate over or under contracting energy resources and unnecessary financing. Machine learning techniques for predicting energy are the trending solution to overcome the challenges faced by energy companies. The basic need for machine learning algorithms to be trained for accurate prediction requires a considerable amount of data. Another critical factor is balancing the data for enhanced prediction. Data Augmentation is a… More >

  • Open Access

    ARTICLE

    Low-Dose CT Image Denoising Based on Improved WGAN-gp

    Xiaoli Li1,*, Chao Ye1, Yujia Yan2, Zhenlong Du1

    Journal of New Media, Vol.1, No.2, pp. 75-85, 2019, DOI:10.32604/jnm.2019.06259

    Abstract In order to improve the quality of low-dose computational tomography (CT) images, the paper proposes an improved image denoising approach based on WGAN-gp with Wasserstein distance. For improving the training and the convergence efficiency, the given method introduces the gradient penalty term to WGAN network. The novel perceptual loss is introduced to make the texture information of the low-dose images sensitive to the diagnostician eye. The experimental results show that compared with the state-of-art methods, the time complexity is reduced, and the visual quality of low-dose CT images is significantly improved. More >

Displaying 1-10 on page 1 of 4. Per Page