Xiaoya Guo1, Dalin Tang1,2,*, David Molony3, Chun Yang2, Habib Samady3, Jie Zheng4, Gary S. Mintz5, Akiko Maehara5, Jian Zhu6, Genshan Ma6, Mitsuaki Matsumura5, Don P. Giddens3,7
Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 75-76, 2019, DOI:10.32604/mcb.2019.05743
Abstract Atherosclerotic plaque progression is generally considered to be closely associated with morphological and mechanical factors. Plaque morphological information on intravascular ultrasound (IVUS) and optical coherence tomography (OCT) images could complement each other and provide for more accurate plaque morphology. Fluid-structure interaction (FSI) models combining IVUS and OCT were constructed to obtain accurate plaque stress/strain and flow shear stress data for analysis. Accuracy and completeness of imaging and advanced modeling lead to accurate plaque progression predictions.
In vivo IVUS and OCT coronary plaque data at baseline and follow-up were acquired from left circumflex coronary and right coronary… More >