Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Location and Capacity Determination Method of Electric Vehicle Charging Station Based on Simulated Annealing Immune Particle Swarm Optimization

    Jiulong Sun1, Yanbo Che1,*, Ting Yang1, Jian Zhang2, Yibin Cai1

    Energy Engineering, Vol.120, No.2, pp. 367-384, 2023, DOI:10.32604/ee.2023.023661 - 29 November 2022

    Abstract As the number of electric vehicles (EVs) continues to grow and the demand for charging infrastructure is also increasing, how to improve the charging infrastructure has become a bottleneck restricting the development of EVs. In other words, reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system. Considering the construction and maintenance of the charging station, the distribution network loss of the charging station, and the economic loss on the user side of the EV, this paper takes… More > Graphic Abstract

    Location and Capacity Determination Method of Electric Vehicle Charging Station Based on Simulated Annealing Immune Particle Swarm Optimization

  • Open Access

    ARTICLE

    Efficient UAV-Based MEC Using GPU-Based PSO and Voronoi Diagrams

    Mohamed H. Mousa1,2,*, Mohamed K. Hussein2

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.2, pp. 413-434, 2022, DOI:10.32604/cmes.2022.020639 - 21 July 2022

    Abstract Mobile-Edge Computing (MEC) displaces cloud services as closely as possible to the end user. This enables the edge servers to execute the offloaded tasks that are requested by the users, which in turn decreases the energy consumption and the turnaround time delay. However, as a result of a hostile environment or in catastrophic zones with no network, it could be difficult to deploy such edge servers. Unmanned Aerial Vehicles (UAVs) can be employed in such scenarios. The edge servers mounted on these UAVs assist with task offloading. For the majority of IoT applications, the execution… More >

  • Open Access

    ARTICLE

    Statistical Analysis of Macromolecular Chains in the Space Filled by Nanoparticles

    J. Zidek1,2, J. Kucera1, J. Jancar1,2

    CMC-Computers, Materials & Continua, Vol.28, No.3, pp. 213-230, 2012, DOI:10.3970/cmc.2012.028.213

    Abstract The paper presents a combination of worm-like chain numerical models and one with a finite set of nano-particles. The primary objective of the models was to analyze the distribution of space in a system filled by particles. Information on the distribution of space was compared to properties of chains inside the set of particles. The set of nanoparticles was constructed with a tool generating a finite set of particles that is randomly distributed in a given space. The particles have a prescribed volume fraction and uniform size. First, the proportions of chains and particles were… More >

  • Open Access

    ARTICLE

    Numerical Results for a Colocated Finite-Volume Scheme on Voronoi Meshes for Navier-Stokes Equations

    V.C. Mariani1, E.E.M. Alonso2, S. Peters3

    CMES-Computer Modeling in Engineering & Sciences, Vol.29, No.1, pp. 15-28, 2008, DOI:10.3970/cmes.2008.029.015

    Abstract An application of Newton's method for linearization of advective terms given by the discretization on unstructured Voronoi meshes for the incompressible Navier-Stokes equations is proposed and evaluated in this article. One of the major advantages of the unstructured approach is its application to very complex geometrical domains and the mesh is adaptable to features of the flow. Moreover, in this work comparisons with the literature results in bi-dimensional lid-driven cavities for different Reynolds numbers allow us to assess the numerical properties of the new proposed finite-volume scheme. Results for the components of the velocity, and More >

  • Open Access

    ARTICLE

    Numerical Computation of Discrete Differential Operators on Non-Uniform Grids

    N. Sukumar1, J. E. Bolander1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.6, pp. 691-706, 2003, DOI:10.3970/cmes.2003.004.691

    Abstract In this paper, we explore the numerical approximation of discrete differential operators on non-uniform grids. The Voronoi cell and the notion of natural neighbors are used to approximate the Laplacian and the gradient operator on irregular grids. The underlying weight measure used in the numerical computations is the {\em Laplace weight function}, which has been previously adopted in meshless Galerkin methods. We develop a difference approximation for the diffusion operator on irregular grids, and present numerical solutions for the Poisson equation. On regular grids, the discrete Laplacian is shown to reduce to the classical finite More >

Displaying 1-10 on page 1 of 5. Per Page