Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    Simulation and Traffic Safety Assessment of Heavy-Haul Railway Train-Bridge Coupling System under Earthquake Action

    Liangwei Jiang1,2, Wei Zhang2, Hongyin Yang1,2,3,*, Xiucheng Zhang1, Jinghan Wu2, Zhangjun Liu2

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 835-851, 2024, DOI:10.32604/sdhm.2024.051125 - 20 September 2024

    Abstract Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis, a combined simulation system of train-bridge coupling system (TBCS) under earthquake (MAETB) is developed based on the cooperative work of MATLAB and ANSYS. The simulation system is used to analyze the dynamic parameters of the TBCS of a prestressed concrete continuous rigid frame bridge benchmark model of a heavy-haul railway. The influence of different driving speeds, seismic wave intensities, and traveling wave effects on the dynamic response of the TBCS under More >

  • Open Access

    ARTICLE

    Dynamic Response Impact of Vehicle Braking on Simply Supported Beam Bridges with Corrugated Steel Webs Based on Vehicle-Bridge Coupled Vibration Analysis

    Yan Wang*, Siwen Li, Na Wei

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3467-3493, 2024, DOI:10.32604/cmes.2024.046454 - 11 March 2024

    Abstract A novel approach for analyzing coupled vibrations between vehicles and bridges is presented, taking into account spatiotemporal effects and mechanical phenomena resulting from vehicle braking. Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method. The method’s validity and reliability are substantiated through numerical examples. A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed, braking acceleration, braking location, and road surface roughness on the mid-span displacement and impact factor of the bridge… More >

  • Open Access

    ARTICLE

    Health Monitoring of Dry Clutch System Using Deep Learning Approach

    Ganjikunta Chakrapani, V. Sugumaran*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1513-1530, 2023, DOI:10.32604/iasc.2023.034597 - 21 June 2023

    Abstract Clutch is one of the most significant components in automobiles. To improve passenger safety, reliability and economy of automobiles, advanced supervision and fault diagnostics are required. Condition Monitoring is one of the key divisions that can be used to track the reliability of clutch and allied components. The state of the clutch elements can be monitored with the help of vibration signals which contain valuable information required for classification. Specific drawbacks of traditional fault diagnosis techniques like high reliability on human intelligence and the requirement of professional expertise, have made researchers look for intelligent fault More >

  • Open Access

    ARTICLE

    Bending and Free Vibration Analysis of Porous-Functionally-Graded (PFG) Beams Resting on Elastic Foundations

    Lazreg Hadji1,2,*, Fabrice Bernard3, Nafissa Zouatnia4

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 1043-1054, 2023, DOI:10.32604/fdmp.2022.022327 - 02 November 2022

    Abstract The bending and free vibration of porous functionally graded (PFG) beams resting on elastic foundations are analyzed. The material features of the PFG beam are assumed to vary continuously through the thickness according to the volume fraction of components. The foundation medium is also considered to be linear, homogeneous, and isotropic, and modeled using the Winkler-Pasternak law. The hyperbolic shear deformation theory is applied for the kinematic relations, and the equations of motion are obtained using the Hamilton’s principle. An analytical solution is presented accordingly, assuming that the PFG beam is simply supported. Comparisons with More > Graphic Abstract

    Bending and Free Vibration Analysis of Porous-Functionally-Graded (PFG) Beams Resting on Elastic Foundations

  • Open Access

    ARTICLE

    Free Vibration Analysis of Rectangular Plate with Cutouts under Elastic Boundary Conditions in Independent Coordinate Coupling Method

    Qiuhong Li1, Wenhao Huang1,*, Joey Sanchez2, Ping Wang1, Qiang Ding3, Jiufa Wang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 2093-2121, 2023, DOI:10.32604/cmes.2022.021340 - 20 September 2022

    Abstract Based on Kirchhoff plate theory and the Rayleigh-Ritz method, the model for free vibration of rectangular plate with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved Fourier series in combination with the independent coordinate coupling method (ICCM). The effect of the cutout is taken into account by subtracting the energies of the cutouts from the total energies of the whole plate. The vibration displacement function of the hole domain is based on the coordinate system of the hole domain in this method. From the continuity condition of the vibration displacement More >

  • Open Access

    ARTICLE

    SVM Algorithm for Vibration Fault Diagnosis in Centrifugal Pump

    Nabanita Dutta1, Palanisamy Kaliannan1,*, Paramasivam Shanmugam2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2997-3020, 2023, DOI:10.32604/iasc.2023.028704 - 17 August 2022

    Abstract Vibration failure in the pumping system is a significant issue for industries that rely on the pump as a critical device which requires regular maintenance. To save energy and money, a new automated system must be developed that can detect anomalies at an early stage. This paper presents a case study of a machine learning (ML)-based computational technique for automatic fault detection in a cascade pumping system based on variable frequency drive (VFD). Since the intensity of the vibrational effect depends on which axis has the most significant effect, a three-axis accelerometer is used to… More >

  • Open Access

    ARTICLE

    Vibration Characteristics Analysis and Structure Optimization of Catenary Portal Structure on Four-Wire Bridge

    Sihua Wang1,2, Xujie Li1,2,*

    Structural Durability & Health Monitoring, Vol.16, No.4, pp. 361-382, 2022, DOI:10.32604/sdhm.2022.023851 - 03 January 2023

    Abstract The portal structure is the support equipment in the catenary, which bears the load of contact suspension and support equipment. In practical work, with the change of external forces, the support equipment bears complex and changeable loads, so it has higher requirements for its reliability and safety. In order to study the dynamic characteristics of catenary portal structure on continuous beam of four-way bridge, taking the catenary portal structure on Dshaping four-way bridge as the research object, the portal structure simulation model of bridge-network integration was established in Midas Civil. The maximum point of deformation… More >

  • Open Access

    ARTICLE

    Tactile Response Characterization of a Dynamic System Using Craig-Bampton Method

    S. Pradeepkumar*, P. Nagaraj

    Sound & Vibration, Vol.56, No.3, pp. 221-233, 2022, DOI:10.32604/sv.2022.014889 - 10 August 2022

    Abstract Vibrational characteristics in small horizontal axis wind turbine system are presented in this study with a system concept called tactile response and substructuring. The main focus is on managing the dynamic properties like vibration, noise, and harshness that occur during the operational mode. Tactile response is defined as the response of subsystem which is induced when a human body touches a vibrating system. Sub structuring is a computational method used to reduce the dynamic behavior of a large complex system with a smaller number of degrees of freedom without disturbing the mesh size of the… More >

  • Open Access

    PROCEEDINGS

    Nonlinear Vibration Analysis of Horizontal Bi-Directional Restoring Force Characteristics for Seismic Isolated Laminated Rubber

    Ayumi Takahashi1,*, Kenya Kashiwagi2, Tomoyuki Tsuchiya2, Kazuhito Misaji1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-1, 2022, DOI:10.32604/icces.2022.08705

    Abstract As a characteristic of seismic isolated laminated rubber, the rubber is torsional deformed when it was loaded in horizontal bi-direction, and breaks with less force than when loaded in unidirectional. It is necessary to extend the model which has been used for unidirectional analysis to the model which can be analyzed in bi-direction. As a previous study, Igarashi applied the Multiple Shear Springs (MSS) model which is a horizontal bi-directional model, and compared them with measured values to verify their validity [1]. The authors extended PFT-ELS method to MSS model which can analyze bidirection [2].… More >

  • Open Access

    ARTICLE

    Free Vibration Analysis of RC Box-Girder Bridges Using FEM

    Preeti Agarwal*, Priyaranjan Pal, Pradeep Kumar Mehta

    Sound & Vibration, Vol.56, No.2, pp. 105-125, 2022, DOI:10.32604/sv.2022.014874 - 25 March 2022

    Abstract The free vibration analysis of simply supported box-girder bridges is carried out using the finite element method. The fundamental frequency is determined in straight, skew, curved and skew-curved box-girder bridges. It is important to analyse the combined effect of skewness and curvature because skew-curved box-girder bridge behaviour cannot be predicted by simply adding the individual effects of skewness and curvature. At first, an existing model is considered to validate the present approach. A convergence study is carried out to decide the mesh size in the finite element method. An exhaustive parametric study is conducted to… More >

Displaying 1-10 on page 1 of 40. Per Page