Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Influence of Brownian Motion, Thermophoresis and Magnetic Effects on a Fluid Containing Nanoparticles Flowing over a Stretchable Cylinder

    Aaqib Majeed1,*, Ahmad Zeeshan2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 525-536, 2024, DOI:10.32604/fdmp.2023.028716 - 12 January 2024

    Abstract The influence of Brownian motion and thermophoresis on a fluid containing nanoparticles flowing over a stretchable cylinder is examined. The classical Navier-Stokes equations are considered in a porous frame. In addition, the Lorentz force is taken into account. The controlling coupled nonlinear partial differential equations are transformed into a system of first order ordinary differential equations by means of a similarity transformation. The resulting system of equations is solved by employing a shooting approach properly implemented in MATLAB. The evolution of the boundary layer and the growing velocity is shown graphically together with the related More >

  • Open Access

    ARTICLE

    Stability Scrutinization of Agrawal Axisymmetric Flow of Nanofluid through a Permeable Moving Disk Due to Renewable Solar Radiation with Smoluchowski Temperature and Maxwell Velocity Slip Boundary Conditions

    Umair Khan1,2, Aurang Zaib3, Anuar Ishak1, Iskandar Waini4, El-Sayed M. Sherif5, Dumitru Baleanu6,7,8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1371-1392, 2023, DOI:10.32604/cmes.2022.020911 - 31 August 2022

    Abstract The utilization of solar energy is essential to all living things since the beginning of time. In addition to being a constant source of energy, solar energy (SE) can also be used to generate heat and electricity. Recent technology enables to convert the solar energy into electricity by using thermal solar heat. Solar energy is perhaps the most easily accessible and plentiful source of sustainable energy. Copper-based nanofluid has been considered as a method to improve solar collector performance by absorbing incoming solar energy directly. The goal of this research is to explore theoretically the… More >

  • Open Access

    ARTICLE

    ROLE OF MAXWELL VELOCITY AND SMOLUCHOWSKI TEMPERATURE JUMP SLIP BOUNDARY CONDITIONS TO NON-NEWTONIAN CARREAU FLUID

    T. Sajid , M. Sagheer, S. Hussain

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-12, 2020, DOI:10.5098/hmt.14.28

    Abstract The forthright aim of this correspondence is to examine the conduct of MHD, viscous dissipation and Joule heating on three dimensional nonNewtonian Carreau fluid flow over a linear stretching surface. Impact of non-linear Rosseland thermal radiation and homogenous/heterogenous reaction process have been also considered to examine the heat and mass transfer process during fluid flow. The velocity and thermal slip effect at the surface have also been scrutinized in detail. By utilizing a suitable transformation, the modelled partial differential equations (PDEs) are renovated into ordinary differential equations (ODEs) and furthermore solved with the help of… More >

  • Open Access

    ARTICLE

    Integral Transform Method for a Porous Slider with Magnetic Field and Velocity Slip

    Naeem Faraz1, *, Yasir Khan2, Amna Anjum1, Anwar Hussain3

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.3, pp. 1099-1118, 2020, DOI:10.32604/cmes.2020.08389 - 01 March 2020

    Abstract Current research is about the injection of a viscous fluid in the presence of a transverse uniform magnetic field to reduce the sliding drag. There is a slip-on both the slider and the ground in the two cases, for example, a long porous slider and a circular porous slider. By utilizing similarity transformation Navier-Stokes equations are converted into coupled equations which are tackled by Integral Transform Method. Solutions are obtained for different values of Reynolds numbers, velocity slip, and magnetic field. We found that surface slip and Reynolds number has a substantial influence on the More >

  • Open Access

    ARTICLE

    BIO-MATHEMATICAL ANALYSIS FOR THE STAGNATION POINT FLOW OVER A NON-LINEAR STRETCHING SURFACE WITH THE SECOND ORDER VELOCITY SLIP AND TITANIUM ALLOY NANOPARTICLE

    S.R.R. Reddya , P. Bala Anki Reddya,*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-11, 2018, DOI:10.5098/hmt.10.13

    Abstract The main object of this paper is to steady the Bio-mathematical analysis for the stagnation point flow over a non-linear stretching sheet with the velocity slip and Casson fluid model. Analysis for the both titanium and titanium alloy within the pure blood as taken as the base fluid. The governing non-linear partial differential equations are transformed into ordinary which are solved numerically by utilizing the fourth order RungeKutta method with shooting technique. Graphical results have been presented for dimensionless stream function, velocity profile, shear stress, temperature profile for various physical parameters of interest. It was More >

  • Open Access

    ARTICLE

    PERISTALTIC FLOW OF CASSON LIQUID IN AN INCLINED POROUS TUBE WITH CONVECTIVE BOUNDARY CONDITIONS AND VARIABLE LIQUID PROPERTIES

    C. Rajashekhara , G. Manjunathaa,† , Hanumesh Vaidyab , B. B. Divyaa , K. V. Prasadc

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-8, 2018, DOI:10.5098/hmt.11.35

    Abstract The primary objective of this paper is to examine the impact of variable viscosity and thermal conductivity on peristaltic transport of Casson liquid in a convectively heated inclined porous tube. The viscosity differs over the radial axis, and temperature dependent thermal conductivity is taken into account. The perturbation technique is utilized to solve the governing nonlinear equations under the assumption of long wavelength and small Reynolds number. The analytical solutions are obtained for velocity, streamlines, pressure rise, frictional force, and temperature when subjected to slip and convective boundary conditions. The impacts of related parameters on More >

  • Open Access

    ARTICLE

    SLIP EFFECT ON HEAT AND MASS TRANSFER IN CASSON FLUID WITH CATTANEO-CHRISTOVE HEAT FLUX MODEL

    P. Bala Anki Reddya , B. Mallikarjunab,*,K. Madhu Sudhan Reddya

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-10, 2018, DOI:10.5098/hmt.11.5

    Abstract In this paper, a mathematical model has been developed to analyze the double diffusive convective flow of Casson fluid over an inclined stretching sheet with Cattaneo-Christov Heat Flux model. The velocity slip is considered over the surface of the stretching sheet as well. The governing equations for the pertinent model are transformed into non-dimensional highly coupled nonlinear differential equations using similarity transformations. The implicit finite difference method is used to carry out the numerical results and presented the graphs for different values of the physical parameter, Casson fluid parameter, and thermal relation time parameter, chemical… More >

  • Open Access

    ARTICLE

    Mass Transfer of MHD Nanofluid in Presence of Chemical Reaction on A Permeable Rotating Disk with Convective Boundaries, Using Buongiorno's Model

    Muhammad Shoaib Arif 1, *, Yasir Nawaz1, Mairaj Bibi2, Zafar Ali1

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.1, pp. 31-49, 2018, DOI:10.31614/cmes.2018.00434

    Abstract This communiqué is opted to study the flow of nanofluid because of heated disk rotation subjected to the convective boundaries with chemical reaction of first order. Wherein Buongiorno’s model for nanofluids is used due to its wide range of applications and the rotating disk under investigation is permeable. Small magneto Reynolds parameter and boundary layer assumptions are carried out to formulate the problem. The system of nonlinear partial differential equations governing the flow problem is converted into the set of ordinary differential equations by using particular relations known as Von Karman transformations. The complicated set More >

  • Open Access

    ARTICLE

    MHD SLIP FLOW AND HEAT TRANSFER OVER AN EXPONENTIALLY STRETCHING PERMEABLE SHEET EMBEDDED IN A POROUS MEDIUM WITH HEAT SOURCE

    P. R. Sharmaa , Sushila Choudharya,* , O. D. Makindeb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.18

    Abstract Steady two dimensional laminar magnetohydrodynamic (MHD) slip flow and heat transfer of a viscous incompressible and electrically conducting fluid past over a flat exponentially non-conducting stretching porous sheet embedded in a porous medium with non uniform permeability in the presence of non uniform heat source is investigated. The governing equations of velocity and temperature distributions are solved numerically and the effects of different physical parameters are shown through graphs. The rate of shear stress and the rate of heat transfer at the sheet are derived, discussed numerically and their numerical values for various values of More >

Displaying 1-10 on page 1 of 9. Per Page