Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Numerical Investigations on Effects of Physical Parameters on Single Bubble Generation from Capillary Needles in Newtonian Liquids

    Meng Jia, Mingjun Pang*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 337-366, 2023, DOI:10.32604/fhmt.2023.044286

    Abstract The interphase mass, heat transfer efficiency, and flow resistance are strongly dependent on bubble size in gasliquid two-phase systems, so it is very important for engineering applications to effectively control bubble size. In this paper, the formation, growth, and detachment of single bubbles in Newtonian liquids based on capillary needles were studied in detail using a volume of fluid method. The authors investigated the effects of gas injection velocity, gravitational level, surface tension coefficient, needle radius, and liquid−phase properties (liquid viscosity and density) on the process of bubble generation, and the effects of the above… More >

  • Open Access

    ARTICLE

    A Numerical Model for Simulating Two-Phase Flow with Adaptive Mesh Refinement

    Yunxing Zhang, Shan Ma, Kangping Liao, Wenyang Duan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 43-64, 2021, DOI:10.32604/cmes.2021.014847

    Abstract In this study, a numerical model for simulating two-phase flow is developed. The Cartesian grid with Adaptive Mesh Refinement (AMR) is adopted to reduce the computational cost. An explicit projection method is used for the time integration and the Finite Difference Method (FDM) is applied on a staggered grid for the discretization of spatial derivatives. The Volume of Fluid (VOF) method with Piecewise-Linear Interface Calculation (PLIC) is extended to the AMR grid to capture the gas-water interface accurately. A coarse-fine interface treatment method is developed to preserve the flux conservation at the interfaces. Several two-dimensional More >

  • Open Access

    ARTICLE

    Influence of Nozzle Orifice Shape on the Atomization Process of Si3N4 in a Dry Granulation Process

    Dongling Yu1, Huiling Zhang1, Xu Zeng1, Dahai Liao1,*, Nanxing Wu2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.3, pp. 569-586, 2021, DOI:10.32604/fdmp.2021.014711

    Abstract In order to reveal the intrinsic fluid-dynamic mechanisms of a pressure-swirl nozzle used for Si3N4 dry granulation, and effectively predict its external spray characteristics, the dynamics of air-atomized liquid two-phase flow is analyzed using a VOF (Volume of Fraction) method together with the modified realizable k-ε turbulence model. The influence of nozzle orifice shape on velocity distribution, pressure distribution is studied. The results show that the pressure difference in a convergent conical nozzle is the largest with a hollow air core being formed in the nozzle. The corresponding velocity of atomized liquid at nozzle orifice is More >

  • Open Access

    ARTICLE

    Numerical Study on the Leakage and Diffusion Characteristics of Low-Solubility and Low-Volatile Dangerous Chemicals from Ship in Inland Rivers

    Shuifen Zhan1, 2, 3, Mingchao Wang2, *, Min Wang5, *, Qianqian Shao4, Zefang Zhang3, Wenxin Jiang2, Xuemin Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.1, pp. 217-235, 2020, DOI:10.32604/cmes.2020.08289

    Abstract Considering the accidents of ships for dangerous chemicals transportation in inland rivers, a numerical method for the simulation of the leakage and diffusion processes of dangerous chemicals in inland rivers is proposed in this paper. Geographic information, such as rivers and buildings in the model, is obtained through Google Earth and structures of rivers and buildings are described by Auto CAD. In addition, the Fluent is adopted to simulate the leakage and diffusion processes of the dangerous chemicals where the standard k-ε model is used to calculate the turbulent flow. Considering the interaction between chemicals and… More >

  • Open Access

    ARTICLE

    Droplet Breakup Regime in a Cross-Junction Device with Lateral Obstacles

    Tawfiq Chekifi1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.5, pp. 545-555, 2019, DOI:10.32604/fdmp.2019.01793

    Abstract Numerical simulation using Ansys Fluent code is performed, to investigate droplet generation in cross-junction based VOF method. Droplets of water are generated by the shear stress applied by continuous phase (oil), two configurations of cross-junction are suggested; the first is a simple model no modification is performed at the outer channel, while the second model is characterized by a lateral obstacle. we study the effect of velocity ratio, viscous parameter, interfacial tension, flow condition on droplet size and frequency, the effect of lateral obstacles on droplets generation is also focused and analysed. The numerical simulations… More >

  • Open Access

    ARTICLE

    Simultaneous, But Not Consecutive, Combination With Folinate Salts Potentiates 5-Fluorouracil Antitumor Activity In Vitro and In Vivo

    Antonello Di Paolo1, Paola Orlandi1, Teresa Di Desidero, Romano Danesi, Guido Bocci

    Oncology Research, Vol.25, No.7, pp. 1129-1140, 2017, DOI:10.3727/096504017X14841698396900

    Abstract The combination of folinate salts to 5-fluoruracil (5-FU)-based schedules is an established clinical routine in the landscape of colorectal cancer treatment. The aim of this study was to investigate the pharmacological differences between the sequential administration of folinate salts (1 h before, as in clinical routine) followed by 5-FU and the simultaneous administration of both drugs. Proliferation and apoptotic assays were performed on human colon cancer cells exposed to 5-FU, calcium (CaLV), or disodium (NaLV) levofolinate or their simultaneous and sequential combination for 24 and 72 h. TYMS and SLC19A1 gene expression was performed with… More >

  • Open Access

    ARTICLE

    Computational Investigation of Droplets Behaviour inside Passive Microfluidic Oscillator

    Tawfiq Chekifi1, *, Brahim Dennai2, Rachid Khelfaoui2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.3, pp. 173-187, 2017, DOI:10.3970/fdmp.2017.013.173

    Abstract Recently, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops and many other functions. In this paper, we suggest a numerical CFD study of microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous droplets of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator. Droplets production is computed by volume-of-fluid method (VOF). Flow oscillations of droplets were triggered by the Coanda effect of jet flow. More >

  • Open Access

    ARTICLE

    Numerical Analysis on Unsteady Internal Flow in an Evaporating Droplet

    Zhentao Wang1,*, Kai Dong, Shuiqing Zhan

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.4, pp. 221-234, 2017, DOI:10.3970/fdmp.2017.013.221

    Abstract We have investigated the unsteady internal flow occurring in an evaporating droplet interacting with a high-temperature atmospheric environment. The Navier-Stokes equations for both the liquid and the gas phases have been solved numerically in the framework of a Volume of Fluid (VOF) method relying on the so-called Continuum Surface Force (CSF) model. A specific kernel able to account for evaporation and related phase change has been incorporated directly in the VOF approach. The temperature distributions within the droplet has been found to be relatively uniform by virtue of the Marangoni flow. The transient evolution of More >

  • Open Access

    ARTICLE

    Fluid dynamic analysis of different Yacht configurations with VOF method

    R. Savino1, M . Visone2, D. Rossetto3, V. D'Oriano4

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.4, pp. 331-341, 2015, DOI:10.3970/fdmp.2015.011.331

    Abstract This paper presents two applications of Computational Fluid Dynamics (CFD) to super and mega yacht design, based on the Volume of Fluid method. After an overview of recent literature on the subject, the analysis of the hydrodynamic performances of different hull configurations and of different appendage configurations is presented. More >

  • Open Access

    ARTICLE

    Numerical Simulation of Droplet Breakup, Splitting and Sorting in a Microfluidic Device

    Chekifi. T1,2, Dennai. B1, Khelfaoui. R1

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.3, pp. 205-220, 2015, DOI:10.3970/fdmp.2015.011.205

    Abstract Droplet generation, splitting and sorting are investigated numerically in the framework of a VOF technique for interface tracking and a finite-volume numerical method using the commercial code FLUENT. Droplets of water-in-oil are produced by a flow focusing technique relying on the use of a microchannell equipped with an obstacle to split the droplets. The influence of several parameters potentially affecting this process is investigated parametrically towards the end of identifying "optimal" conditions for droplet breakup. Such parameters include surface tension, the capillary number and the main channel width. We show that the capillary number plays More >

Displaying 1-10 on page 1 of 21. Per Page