Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Implementation of VLSI on Signal Processing-Based Digital Architecture Using AES Algorithm

    Mohanapriya Marimuthu1, Santhosh Rajendran2, Reshma Radhakrishnan2, Kalpana Rengarajan3, Shahzada Khurram4, Shafiq Ahmad5, Abdelaty Edrees Sayed5, Muhammad Shafiq6,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4729-4745, 2023, DOI:10.32604/cmc.2023.033020 - 28 December 2022

    Abstract Continuous improvements in very-large-scale integration (VLSI) technology and design software have significantly broadened the scope of digital signal processing (DSP) applications. The use of application-specific integrated circuits (ASICs) and programmable digital signal processors for many DSP applications have changed, even though new system implementations based on reconfigurable computing are becoming more complex. Adaptable platforms that combine hardware and software programmability efficiency are rapidly maturing with discrete wavelet transformation (DWT) and sophisticated computerized design techniques, which are much needed in today’s modern world. New research and commercial efforts to sustain power optimization, cost savings, and improved… More >

  • Open Access

    ARTICLE

    Performance Measurement of Energy Efficient and Highly Scalable Hybrid Adder

    B. Annapoorani*, P. Marikkannu

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2659-2672, 2023, DOI:10.32604/csse.2023.025075 - 21 December 2022

    Abstract The adders are the vital arithmetic operation for any arithmetic operations like multiplication, subtraction, and division. Binary number additions are performed by the digital circuit known as the adder. In VLSI (Very Large Scale Integration), the full adder is a basic component as it plays a major role in designing the integrated circuits applications. To minimize the power, various adder designs are implemented and each implemented designs undergo defined drawbacks. The designed adder requires high power when the driving capability is perfect and requires low power when the delay occurred is more. To overcome such… More >

  • Open Access

    ARTICLE

    Power Prediction of VLSI Circuits Using Machine Learning

    E. Poovannan*, S. Karthik

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2161-2177, 2023, DOI:10.32604/cmc.2023.032512 - 22 September 2022

    Abstract The difference between circuit design stage and time requirements has broadened with the increasing complexity of the circuit. A big database is needed to undertake important analytical work like statistical method, heat research, and IR-drop research that results in extended running times. This unit focuses on the assessment of test strength. Because of the enormous number of successful designs for current models and the unnecessary time required for every test, maximum energy ratings with all tests cannot be achieved. Nevertheless, test safety is important for producing trustworthy findings to avoid loss of output and harm… More >

  • Open Access

    ARTICLE

    VLSI Implementation of Optimized 2D SIMM Chaotic Map for Image Encryption

    M. Sundar Prakash Balaji1,*, V. R. Vijaykumar2, Kamalraj Subramaniam3, M. Kannan4, V. Ayyem Pillai5

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3155-3168, 2023, DOI:10.32604/iasc.2023.028969 - 17 August 2022

    Abstract The current research work proposed a novel optimization-based 2D-SIMM (Two-Dimensional Sine Iterative chaotic map with infinite collapse Modulation Map) model for image encryption. The proposed 2D-SIMM model is derived out of sine map and Iterative Chaotic Map with Infinite Collapse (ICMIC). In this technique, scrambling effect is achieved with the help of Chaotic Shift Transform (CST). Chaotic Shift Transform is used to change the value of pixels in the input image while the substituted value is cyclically shifted according to the chaotic sequence generated by 2D-SIMM model. These chaotic sequences, generated using 2D-SIMM model, are More >

  • Open Access

    ARTICLE

    Incredible VLSI Design for MIMO System Using SEC-QPSK Detection

    L. Vasanth*, N. J. R. Muniraj

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 955-966, 2022, DOI:10.32604/iasc.2022.022979 - 08 February 2022

    Abstract Multiple Input Multiple Output (MIMO) is an advanced communication technology that is often used for secure data transfer for military and other applications while transmitting data with high error and noise. To address this issue, a step-by-step hybrid Quadrature Phase Shift Keying (QPSK) modulation scheme in the MIMO system for a complex Very Large-Scale Integration (VLSI) format is recommended. When compared to Binary Phase Shift Keying (BPSK), this approach provides twice the data rate while using half the bandwidth. The complexity is lowered through multiplication and addition, as well as error and noise reduction in More >

  • Open Access

    ARTICLE

    Test Vector Optimization Using Pocofan-Poframe Partitioning

    P. PattunnaRajam1, *, Reeba korah2, G. Maria Kalavathy3

    CMC-Computers, Materials & Continua, Vol.54, No.3, pp. 251-268, 2018, DOI:10.3970/cmc.2018.054.251

    Abstract This paper presents an automated POCOFAN-POFRAME algorithm that partitions large combinational digital VLSI circuits for pseudo exhaustive testing. In this paper, a simulation framework and partitioning technique are presented to guide VLSI circuits to work under with fewer test vectors in order to reduce testing time and to develop VLSI circuit designs. This framework utilizes two methods of partitioning Primary Output Cone Fanout Partitioning (POCOFAN) and POFRAME partitioning to determine number of test vectors in the circuit. The key role of partitioning is to identify reconvergent fanout branch pairs and the optimal value of primary… More >

Displaying 1-10 on page 1 of 6. Per Page