Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Vehicle Head and Tail Recognition Algorithm for Lightweight DCDSNet

    Chao Wang1,3, Kaijie Zhang1,2,*, Xiaoyong Yu1, Dejun Li2, Wei Xie2, Xinqiao Wang2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4451-4473, 2024, DOI:10.32604/cmc.2024.051764 - 12 September 2024

    Abstract In the model of the vehicle recognition algorithm implemented by the convolutional neural network, the model needs to compute and store a lot of parameters. Too many parameters occupy a lot of computational resources making it difficult to run on computers with poor performance. Therefore, obtaining more efficient feature information of target image or video with better accuracy on computers with limited arithmetic power becomes the main goal of this research. In this paper, a lightweight densely connected, and deeply separable convolutional network (DCDSNet) algorithm is proposed to achieve this goal. Visual Geometry Group (VGG) More >

  • Open Access

    ARTICLE

    Anatomical Region Detection Scheme Using Deep Learning Model in Video Capsule Endoscope

    S. Rajagopal1,*, T. Ramakrishnan2, S. Vairaprakash3

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1927-1941, 2022, DOI:10.32604/iasc.2022.024998 - 25 May 2022

    Abstract Video capsule endoscope (VCE) is a developing methodology, which permits analysis of the full gastrointestinal (GI) tract with minimum intrusion. Although VCE permits for profound analysis, evaluating and analyzing for long hours of images is tiresome and cost-inefficient. To achieve automatic VCE-dependent GI disease detection, identifying the anatomical region shall permit for a more concentrated examination and abnormality identification in each area of the GI tract. Hence we proposed a hybrid (Long-short term memory-Visual Geometry Group network) LSTM-VGGNET based classification for the identification of the anatomical area inside the gastrointestinal tract caught by VCE images.… More >

  • Open Access

    ARTICLE

    Image-Based Automatic Diagnostic System for Tomato Plants Using Deep Learning

    Shaheen Khatoon1,*, Md Maruf Hasan1, Amna Asif1, Majed Alshmari1, Yun-Kiam Yap2

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 595-612, 2021, DOI:10.32604/cmc.2021.014580 - 12 January 2021

    Abstract Tomato production is affected by various threats, including pests, pathogens, and nutritional deficiencies during its growth process. If control is not timely, these threats affect the plant-growth, fruit-yield, or even loss of the entire crop, which is a key danger to farmers’ livelihood and food security. Traditional plant disease diagnosis methods heavily rely on plant pathologists that incur high processing time and huge cost. Rapid and cost-effective methods are essential for timely detection and early intervention of basic food threats to ensure food security and reduce substantial economic loss. Recent developments in Artificial Intelligence (AI)… More >

Displaying 1-10 on page 1 of 3. Per Page