Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Contemporary Study for Detection of COVID-19 Using Machine Learning with Explainable AI

    Saad Akbar1,2, Humera Azam1, Sulaiman Sulmi Almutairi3,*, Omar Alqahtani4, Habib Shah4, Aliya Aleryani4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1075-1104, 2024, DOI:10.32604/cmc.2024.050913 - 18 July 2024

    Abstract The prompt spread of COVID-19 has emphasized the necessity for effective and precise diagnostic tools. In this article, a hybrid approach in terms of datasets as well as the methodology by utilizing a previously unexplored dataset obtained from a private hospital for detecting COVID-19, pneumonia, and normal conditions in chest X-ray images (CXIs) is proposed coupled with Explainable Artificial Intelligence (XAI). Our study leverages less preprocessing with pre-trained cutting-edge models like InceptionV3, VGG16, and VGG19 that excel in the task of feature extraction. The methodology is further enhanced by the inclusion of the t-SNE (t-Distributed… More >

  • Open Access

    ARTICLE

    HIUNET: A Hybrid Inception U-Net for Diagnosis of Diabetic Retinopathy

    S. Deva Kumar, S. Venkatramaphanikumar*, K. Venkata Krishna Kishore

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1013-1032, 2023, DOI:10.32604/iasc.2023.038165 - 29 April 2023

    Abstract Type 2 diabetes patients often suffer from microvascular complications of diabetes. These complications, in turn, often lead to vision impairment. Diabetic Retinopathy (DR) detection in its early stage can rescue people from long-term complications that could lead to permanent blindness. In this study, we propose a complex deep convolutional neural network architecture with an inception module for automated diagnosis of DR. The proposed novel Hybrid Inception U-Net (HIUNET) comprises various inception modules connected in the U-Net fashion using activation maximization and filter map to produce the image mask. First, inception blocks were used to enlarge… More >

  • Open Access

    ARTICLE

    Block-Wise Neural Network for Brain Tumor Identification in Magnetic Resonance Images

    Abdullah A. Asiri1, Muhammad Aamir2, Ahmad Shaf2,*, Tariq Ali2, Muhammad Zeeshan3, Muhammad Irfan4, Khalaf A. Alshamrani1, Hassan A. Alshamrani1, Fawaz F. Alqahtani1, Ali H. D. Alshehri1

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5735-5753, 2022, DOI:10.32604/cmc.2022.031747 - 28 July 2022

    Abstract The precise brain tumor diagnosis is critical and shows a vital role in the medical support for treating tumor patients. Manual brain tumor segmentation for cancer analysis from many Magnetic Resonance Images (MRIs) created in medical practice is a problematic and timewasting task for experts. As a result, there is a critical necessity for more accurate computer-aided methods for early tumor detection. To remove this gap, we enhanced the computational power of a computer-aided system by proposing a fine-tuned Block-Wise Visual Geometry Group19 (BW-VGG19) architecture. In this method, a pre-trained VGG19 is fine-tuned with CNN More >

  • Open Access

    REVIEW

    Anomaly Detection in Textured Images with a Convolutional Neural Network for Quality Control of Micrometric Woven Meshes

    Pierre-Frédéric Villard1,*, Maureen Boudart2, Ioana Ilea3, Fabien Pierre1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1639-1648, 2022, DOI:10.32604/fdmp.2022.021726 - 27 June 2022

    Abstract Industrial woven meshes are composed of metal materials and are often used in construction, industrial and residential activities or applications. The objective of this work is defect detection in industrial fabrics in the quality control stage. In order to overcome the limitations of manual methods, which are often tedious and time-consuming, we propose a strategy that can automatically detect defects in micrometric steel meshes by means of a Convolutional Neural Network. The database used for such a purpose comes from real problem data for anomaly detection in micrometric woven meshes. This detection is performed through More >

  • Open Access

    ARTICLE

    Detection of Diabetic Retinopathy Using Custom CNN to Segment the Lesions

    Saleh Albahli1,2,*, Ghulam Nabi Ahmad Hassan Yar3

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 837-853, 2022, DOI:10.32604/iasc.2022.024427 - 08 February 2022

    Abstract Diabetic retinopathy is an eye deficiency that affects the retina as a result of the patient having Diabetes Mellitus caused by high sugar levels. This condition causes the blood vessels that nourish the retina to swell and become distorted and eventually become blocked. In recent times, images have played a vital role in using convolutional neural networks to automatically detect medical conditions, retinopathy takes this to another level because there is need not for just a system that could determine is a patient has retinopathy, but also a system that could tell the severity of… More >

Displaying 1-10 on page 1 of 5. Per Page